linux

如何利用Linux C++进行并发编程

小樊
42
2025-04-20 04:41:46
栏目: 编程语言

在Linux环境下使用C++进行并发编程,主要依赖于POSIX线程库(pthread)和C++11引入的线程库。以下是一些基本的步骤和示例代码,帮助你开始使用C++进行并发编程。

1. 使用POSIX线程库(pthread)

安装pthread

大多数Linux发行版默认已经安装了pthread库。如果没有安装,可以使用包管理器进行安装。例如,在Ubuntu上可以使用以下命令:

sudo apt-get install libpthread-stubs0-dev

示例代码:创建和销毁线程

#include <iostream>
#include <pthread.h>

void* thread_function(void* arg) {
    std::cout << "Thread is running" << std::endl;
    return nullptr;
}

int main() {
    pthread_t thread_id;
    int result = pthread_create(&thread_id, nullptr, thread_function, nullptr);
    if (result != 0) {
        std::cerr << "Failed to create thread" << std::endl;
        return 1;
    }

    pthread_join(thread_id, nullptr);
    std::cout << "Thread has finished" << std::endl;
    return 0;
}

2. 使用C++11线程库

C++11引入了标准线程库,提供了更现代和类型安全的接口。

示例代码:创建和销毁线程

#include <iostream>
#include <thread>

void thread_function() {
    std::cout << "Thread is running" << std::endl;
}

int main() {
    std::thread t(thread_function);
    if (!t.joinable()) {
        std::cerr << "Failed to create thread" << std::endl;
        return 1;
    }

    t.join();
    std::cout << "Thread has finished" << std::endl;
    return 0;
}

3. 线程同步

互斥锁(mutex)

互斥锁用于保护共享数据,防止多个线程同时访问。

pthread示例
#include <iostream>
#include <pthread.h>

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

void* increment_counter(void* arg) {
    for (int i = 0; i < 100000; ++i) {
        pthread_mutex_lock(&mutex);
        // Critical section
        int* counter = static_cast<int*>(arg);
        ++(*counter);
        pthread_mutex_unlock(&mutex);
    }
    return nullptr;
}

int main() {
    int counter = 0;
    pthread_t threads[10];

    for (int i = 0; i < 10; ++i) {
        pthread_create(&threads[i], nullptr, increment_counter, &counter);
    }

    for (int i = 0; i < 10; ++i) {
        pthread_join(threads[i], nullptr);
    }

    std::cout << "Counter value: " << counter << std::endl;
    return 0;
}
C++11示例
#include <iostream>
#include <thread>
#include <mutex>

std::mutex mtx;

void increment_counter(int& counter) {
    for (int i = 0; i < 100000; ++i) {
        std::lock_guard<std::mutex> lock(mtx);
        // Critical section
        ++counter;
    }
}

int main() {
    int counter = 0;
    std::thread threads[10];

    for (int i = 0; i < 10; ++i) {
        threads[i] = std::thread(increment_counter, std::ref(counter));
    }

    for (auto& t : threads) {
        t.join();
    }

    std::cout << "Counter value: " << counter << std::endl;
    return 0;
}

条件变量(condition variable)

条件变量用于线程间的同步,允许一个线程等待某个条件成立。

pthread示例
#include <iostream>
#include <pthread.h>
#include <unistd.h>

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
bool ready = false;

void* wait_for_signal(void* arg) {
    pthread_mutex_lock(&mutex);
    while (!ready) {
        pthread_cond_wait(&cond, &mutex);
    }
    std::cout << "Signal received" << std::endl;
    pthread_mutex_unlock(&mutex);
    return nullptr;
}

void send_signal() {
    sleep(2); // Simulate some work
    pthread_mutex_lock(&mutex);
    ready = true;
    pthread_cond_signal(&cond);
    pthread_mutex_unlock(&mutex);
}

int main() {
    pthread_t thread;
    pthread_create(&thread, nullptr, wait_for_signal, nullptr);
    send_signal();
    pthread_join(thread, nullptr);
    return 0;
}
C++11示例
#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>

std::mutex mtx;
std::condition_variable cv;
bool ready = false;

void wait_for_signal() {
    std::unique_lock<std::mutex> lock(mtx);
    cv.wait(lock, []{ return ready; });
    std::cout << "Signal received" << std::endl;
}

void send_signal() {
    std::this_thread::sleep_for(std::chrono::seconds(2)); // Simulate some work
    std::lock_guard<std::mutex> lock(mtx);
    ready = true;
    cv.notify_one();
}

int main() {
    std::thread thread(wait_for_signal);
    send_signal();
    thread.join();
    return 0;
}

4. 线程池

线程池是一种管理线程的机制,可以提高性能和资源利用率。

示例代码:简单的线程池

#include <iostream>
#include <vector>
#include <thread>
#include <queue>
#include <functional>
#include <mutex>
#include <condition_variable>
#include <future>

class ThreadPool {
public:
    ThreadPool(size_t threads) : stop(false) {
        for (size_t i = 0; i < threads; ++i) {
            workers.emplace_back([this] {
                while (true) {
                    std::function<void()> task;
                    {
                        std::unique_lock<std::mutex> lock(this->queue_mutex);
                        this->condition.wait(lock, [this] { return this->stop || !this->tasks.empty(); });
                        if (this->stop && this->tasks.empty()) {
                            return;
                        }
                        task = std::move(this->tasks.front());
                        this->tasks.pop();
                    }
                    task();
                }
            });
        }
    }

    template<class F, class... Args>
    auto enqueue(F&& f, Args&&... args) -> std::future<typename std::result_of<F(Args...)>::type> {
        using return_type = typename std::result_of<F(Args...)>::type;
        auto task = std::make_shared<std::packaged_task<return_type()>>(
            std::bind(std::forward<F>(f), std::forward<Args>(args)...)
        );
        std::future<return_type> res = task->get_future();
        {
            std::unique_lock<std::mutex> lock(queue_mutex);
            if (stop) {
                throw std::runtime_error("enqueue on stopped ThreadPool");
            }
            tasks.emplace([task]() { (*task)(); });
        }
        condition.notify_one();
        return res;
    }

    ~ThreadPool() {
        {
            std::unique_lock<std::mutex> lock(queue_mutex);
            stop = true;
        }
        condition.notify_all();
        for (std::thread& worker : workers) {
            worker.join();
        }
    }

private:
    std::vector<std::thread> workers;
    std::queue<std::function<void()>> tasks;
    std::mutex queue_mutex;
    std::condition_variable condition;
    bool stop;
};

int main() {
    ThreadPool pool(4);

    auto result = pool.enqueue([](int answer) { return answer; }, 42);
    std::cout << "Result: " << result.get() << std::endl;

    return 0;
}

通过这些示例代码,你可以开始在Linux环境下使用C++进行并发编程。根据具体需求,你可以进一步扩展和优化这些代码。

0
看了该问题的人还看了