在Linux环境下,C++多线程实现同步主要有以下几种方法:
std::mutex
类来实现互斥锁。示例:
#include <iostream>
#include <mutex>
#include <thread>
std::mutex mtx;
void print_block(int n, char c) {
mtx.lock();
for (int i = 0; i < n; ++i) {
std::cout << c;
}
std::cout << '\n';
mtx.unlock();
}
int main() {
std::thread th1(print_block, 50, '*');
std::thread th2(print_block, 50, '$');
th1.join();
th2.join();
return 0;
}
std::condition_variable
类来实现条件变量。示例:
#include <iostream>
#include <mutex>
#include <condition_variable>
#include <thread>
std::mutex mtx;
std::condition_variable cv;
bool ready = false;
void print_id(int id) {
std::unique_lock<std::mutex> lck(mtx);
cv.wait(lck, []{return ready;});
std::cout << "Thread " << id << '\n';
}
void go() {
std::unique_lock<std::mutex> lck(mtx);
ready = true;
cv.notify_all();
}
int main() {
std::thread threads[10];
for (int i = 0; i < 10; ++i) {
threads[i] = std::thread(print_id, i);
}
std::this_thread::sleep_for(std::chrono::seconds(1));
go();
for (auto &th : threads) {
th.join();
}
return 0;
}
std::atomic
模板类来实现原子操作。示例:
#include <iostream>
#include <atomic>
#include <thread>
std::atomic<int> counter(0);
void increment_counter(int n) {
for (int i = 0; i < n; ++i) {
counter++;
}
}
int main() {
std::thread t1(increment_counter, 100000);
std::thread t2(increment_counter, 100000);
t1.join();
t2.join();
std::cout << "Counter: " << counter << '\n';
return 0;
}
std::condition_variable
和std::mutex
实现。示例:
#include <iostream>
#include <mutex>
#include <condition_variable>
#include <thread>
#include <vector>
class Barrier {
public:
explicit Barrier(std::size_t count) : thread_count(count), count(count), generation(0) {}
void wait() {
std::unique_lock<std::mutex> lock(mtx);
int gen = generation;
if (--count == 0) {
generation++;
count = thread_count;
cv.notify_all();
} else {
cv.wait(lock, [this, gen]{ return gen != generation; });
}
}
private:
std::mutex mtx;
std::condition_variable cv;
std::size_t thread_count;
std::size_t count;
int generation;
};
void print_id(int id, Barrier &barrier) {
std::cout << "Thread " << id << " before barrier\n";
barrier.wait();
std::cout << "Thread " << id << " after barrier\n";
}
int main() {
const int num_threads = 5;
Barrier barrier(num_threads);
std::vector<std::thread> threads;
for (int i = 0; i < num_threads; ++i) {
threads.push_back(std::thread(print_id, i, std::ref(barrier)));
}
for (auto &th : threads) {
th.join();
}
return 0;
}
这些方法可以根据具体需求进行选择和组合,以实现多线程之间的同步。