linux

Linux环境下C++多线程怎样实现同步

小樊
49
2025-04-10 02:44:53
栏目: 编程语言

在Linux环境下,C++多线程实现同步主要有以下几种方法:

  1. 互斥锁(mutex):互斥锁是一种用于保护共享资源的同步原语。当一个线程访问共享资源时,它需要先锁定互斥锁,其他线程在互斥锁被解锁之前无法访问该资源。C++11提供了std::mutex类来实现互斥锁。

示例:

#include <iostream>
#include <mutex>
#include <thread>

std::mutex mtx;

void print_block(int n, char c) {
    mtx.lock();
    for (int i = 0; i < n; ++i) {
        std::cout << c;
    }
    std::cout << '\n';
    mtx.unlock();
}

int main() {
    std::thread th1(print_block, 50, '*');
    std::thread th2(print_block, 50, '$');

    th1.join();
    th2.join();

    return 0;
}
  1. 条件变量(condition_variable):条件变量允许线程在某个条件满足时等待或通知其他线程。C++11提供了std::condition_variable类来实现条件变量。

示例:

#include <iostream>
#include <mutex>
#include <condition_variable>
#include <thread>

std::mutex mtx;
std::condition_variable cv;
bool ready = false;

void print_id(int id) {
    std::unique_lock<std::mutex> lck(mtx);
    cv.wait(lck, []{return ready;});
    std::cout << "Thread " << id << '\n';
}

void go() {
    std::unique_lock<std::mutex> lck(mtx);
    ready = true;
    cv.notify_all();
}

int main() {
    std::thread threads[10];
    for (int i = 0; i < 10; ++i) {
        threads[i] = std::thread(print_id, i);
    }

    std::this_thread::sleep_for(std::chrono::seconds(1));
    go();

    for (auto &th : threads) {
        th.join();
    }

    return 0;
}
  1. 原子操作(atomic):原子操作是一种不可中断的操作,可以确保在多线程环境下对共享变量的访问是安全的。C++11提供了std::atomic模板类来实现原子操作。

示例:

#include <iostream>
#include <atomic>
#include <thread>

std::atomic<int> counter(0);

void increment_counter(int n) {
    for (int i = 0; i < n; ++i) {
        counter++;
    }
}

int main() {
    std::thread t1(increment_counter, 100000);
    std::thread t2(increment_counter, 100000);

    t1.join();
    t2.join();

    std::cout << "Counter: " << counter << '\n';

    return 0;
}
  1. 屏障(barrier):屏障是一种同步原语,用于确保多个线程在继续执行之前都达到了某个点。C++11没有直接提供屏障,但可以使用std::condition_variablestd::mutex实现。

示例:

#include <iostream>
#include <mutex>
#include <condition_variable>
#include <thread>
#include <vector>

class Barrier {
public:
    explicit Barrier(std::size_t count) : thread_count(count), count(count), generation(0) {}

    void wait() {
        std::unique_lock<std::mutex> lock(mtx);
        int gen = generation;
        if (--count == 0) {
            generation++;
            count = thread_count;
            cv.notify_all();
        } else {
            cv.wait(lock, [this, gen]{ return gen != generation; });
        }
    }

private:
    std::mutex mtx;
    std::condition_variable cv;
    std::size_t thread_count;
    std::size_t count;
    int generation;
};

void print_id(int id, Barrier &barrier) {
    std::cout << "Thread " << id << " before barrier\n";
    barrier.wait();
    std::cout << "Thread " << id << " after barrier\n";
}

int main() {
    const int num_threads = 5;
    Barrier barrier(num_threads);
    std::vector<std::thread> threads;

    for (int i = 0; i < num_threads; ++i) {
        threads.push_back(std::thread(print_id, i, std::ref(barrier)));
    }

    for (auto &th : threads) {
        th.join();
    }

    return 0;
}

这些方法可以根据具体需求进行选择和组合,以实现多线程之间的同步。

0
看了该问题的人还看了