在CentOS系统中,进程间同步可以通过多种机制实现,以下是一些常用的方法:
文件锁是一种简单的进程间同步机制。可以使用fcntl系统调用或者fcntl命令来实现。
fcntl系统调用#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
int main() {
int fd = open("lockfile.lock", O_RDWR | O_CREAT, 0666);
if (fd == -1) {
perror("open");
exit(EXIT_FAILURE);
}
struct flock lock;
lock.l_type = F_WRLCK; // 写锁
lock.l_whence = SEEK_SET;
lock.l_start = 0;
lock.l_len = 0;
if (fcntl(fd, F_SETLK, &lock) == -1) {
perror("fcntl");
close(fd);
exit(EXIT_FAILURE);
}
// 执行临界区代码
lock.l_type = F_UNLCK; // 解锁
if (fcntl(fd, F_SETLK, &lock) == -1) {
perror("fcntl unlock");
}
close(fd);
return 0;
}
fcntl命令# 获取锁
fcntl -x lock -f lockfile.lock -u $$
# 释放锁
fcntl -x unlock -f lockfile.lock -u $$
信号量是一种更高级的同步机制,可以使用System V信号量或者POSIX信号量。
#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <unistd.h>
union semun {
int val;
struct semid_ds *buf;
unsigned short *array;
};
int main() {
key_t key = ftok("semfile", 'a');
int semid = semget(key, 1, IPC_CREAT | 0666);
if (semid == -1) {
perror("semget");
exit(EXIT_FAILURE);
}
union semun arg;
arg.val = 1; // 初始化信号量为1
if (semctl(semid, 0, SETVAL, arg) == -1) {
perror("semctl");
exit(EXIT_FAILURE);
}
// 获取信号量
struct sembuf sb = {0, -1, SEM_UNDO};
if (semop(semid, &sb, 1) == -1) {
perror("semop");
exit(EXIT_FAILURE);
}
// 执行临界区代码
// 释放信号量
sb.sem_op = 1;
if (semop(semid, &sb, 1) == -1) {
perror("semop unlock");
exit(EXIT_FAILURE);
}
semctl(semid, 0, IPC_RMID);
return 0;
}
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <semaphore.h>
#include <unistd.h>
int main() {
sem_t *sem = sem_open("/mysem", O_CREAT, 0666, 1);
if (sem == SEM_FAILED) {
perror("sem_open");
exit(EXIT_FAILURE);
}
// 获取信号量
if (sem_wait(sem) == -1) {
perror("sem_wait");
exit(EXIT_FAILURE);
}
// 执行临界区代码
// 释放信号量
if (sem_post(sem) == -1) {
perror("sem_post");
exit(EXIT_FAILURE);
}
sem_close(sem);
sem_unlink("/mysem");
return 0;
}
管道和消息队列也可以用于进程间同步。
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main() {
int pipefd[2];
if (pipe(pipefd) == -1) {
perror("pipe");
exit(EXIT_FAILURE);
}
pid_t pid = fork();
if (pid == -1) {
perror("fork");
exit(EXIT_FAILURE);
}
if (pid == 0) { // 子进程
close(pipefd[1]); // 关闭写端
char buffer[10];
read(pipefd[0], buffer, sizeof(buffer));
printf("Child received: %s\n", buffer);
close(pipefd[0]);
} else { // 父进程
close(pipefd[0]); // 关闭读端
const char *message = "Hello from parent";
write(pipefd[1], message, strlen(message) + 1);
close(pipefd[1]);
}
return 0;
}
#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <string.h>
struct msgbuf {
long mtype;
char mtext[100];
};
int main() {
key_t key = ftok("msgfile", 'a');
int msqid = msgget(key, IPC_CREAT | 0666);
if (msqid == -1) {
perror("msgget");
exit(EXIT_FAILURE);
}
struct msgbuf msg;
msg.mtype = 1;
strcpy(msg.mtext, "Hello from sender");
// 发送消息
if (msgsnd(msqid, &msg, sizeof(msg.mtext), 0) == -1) {
perror("msgsnd");
exit(EXIT_FAILURE);
}
// 接收消息
if (msgrcv(msqid, &msg, sizeof(msg.mtext), 1, 0) == -1) {
perror("msgrcv");
exit(EXIT_FAILURE);
}
printf("Received message: %s\n", msg.mtext);
msgctl(msqid, IPC_RMID);
return 0;
}
共享内存是一种高效的进程间通信方式,可以用于同步。
#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <unistd.h>
int main() {
key_t key = ftok("shmfile", 'a');
int shmid = shmget(key, 1024, IPC_CREAT | 0666);
if (shmid == -1) {
perror("shmget");
exit(EXIT_FAILURE);
}
char *str = (char *) shmat(shmid, NULL, 0);
if (str == (char *) -1) {
perror("shmat");
exit(EXIT_FAILURE);
}
// 写入数据
strcpy(str, "Hello from shared memory");
// 读取数据
printf("Read from shared memory: %s\n", str);
shmdt(str);
shmctl(shmid, IPC_RMID, NULL);
return 0;
}
这些方法各有优缺点,选择合适的同步机制取决于具体的应用场景和需求。