在C++ Linux编程中,处理多线程同步通常涉及使用互斥锁(mutexes)、条件变量(condition variables)、信号量(semaphores)和原子操作(atomic operations)等机制。以下是一些常用的同步方法:
std::mutex
来实现互斥锁。#include <iostream>
#include <mutex>
#include <thread>
std::mutex mtx;
void print_block(int n, char c) {
mtx.lock();
for (int i = 0; i < n; ++i) {
std::cout << c;
}
std::cout << '\n';
mtx.unlock();
}
int main() {
std::thread th1(print_block, 50, '*');
std::thread th2(print_block, 50, '$');
th1.join();
th2.join();
return 0;
}
std::condition_variable
来实现条件变量。#include <iostream>
#include <mutex>
#include <condition_variable>
#include <thread>
std::mutex mtx;
std::condition_variable cv;
bool ready = false;
void print_id(int id) {
std::unique_lock<std::mutex> lck(mtx);
cv.wait(lck, []{return ready;});
std::cout << "Thread " << id << '\n';
}
void go() {
std::unique_lock<std::mutex> lck(mtx);
ready = true;
cv.notify_all();
}
int main() {
std::thread threads[10];
for (int i = 0; i < 10; ++i) {
threads[i] = std::thread(print_id, i);
}
std::this_thread::sleep_for(std::chrono::seconds(1));
go();
for (auto &th : threads) {
th.join();
}
return 0;
}
sem_t
结构体和相关的函数来实现信号量。#include <iostream>
#include <semaphore.h>
#include <thread>
sem_t sem;
void print_block(int n, char c) {
sem_wait(&sem);
for (int i = 0; i < n; ++i) {
std::cout << c;
}
std::cout << '\n';
sem_post(&sem);
}
int main() {
sem_init(&sem, 0, 1);
std::thread th1(print_block, 50, '*');
std::thread th2(print_block, 50, '$');
th1.join();
th2.join();
sem_destroy(&sem);
return 0;
}
std::atomic
模板类来实现原子操作。#include <iostream>
#include <atomic>
#include <thread>
std::atomic<int> counter(0);
void increment_counter() {
for (int i = 0; i < 100000; ++i) {
counter.fetch_add(1, std::memory_order_relaxed);
}
}
int main() {
std::thread th1(increment_counter);
std::thread th2(increment_counter);
th1.join();
th2.join();
std::cout << "Counter: " << counter.load(std::memory_order_relaxed) << '\n';
return 0;
}
这些同步方法可以根据实际需求进行选择和组合,以实现多线程之间的同步。