基于ROM的乘法器

发布时间:2020-06-18 11:16:10 作者:lihaichuan
来源:网络 阅读:1558

1、原理简介    

       乘法器的另一种实现思想是采用ROM的方式,即将被乘数和乘数连接起来拼成地址,把两者所有可能的乘积按照地址放在ROM的地址空间中,两个数相乘时,根据两者构成的地址从ROM中读取乘积结果。ROM可采用分布式逻辑资源实现(用于存储数据量小的情况比较合适),也可采用嵌入式BRAM实现(用于存储量数据大的情况比较合适)。
       两个N-bit的二进制数相乘,其结果为2N-bit。这意味着ROM的深度为2的2N次方,宽度为2N。以两个4-bit数相乘为例,其存储空间的大小为256x8-bit(256为深度,8为宽度),显然,随着位宽的增加存储空间将以指数速度膨胀。
       改进方法:将被乘数和乘数进行位分解,即将大位宽的数分解为多个小位宽的数来分别相乘。例如两个4-bit数相乘,可将4-bit数分解成两个2-bit数,为了保证最终乘积结果的正确性,需要对中间结果进行移位。为方便起见,以两个无符号二进制数1101(对应十进制为11)和0110(对应十进制数为0110)相乘为例。其相乘位分解处理流程如下图所示。
 

基于ROM的乘法器

采用的ROM深度为16,宽度为4。存储的内容为两个无符号数相乘的结果。地址及其对应的存储内容如下:

地址
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
内容(十进制)
0
0
0
0
0
1
2
3
0
2
4
6
0
3
6
9
内容(十进制)
0000
0000
0000
0000
0000
0001
0010
0011
0000
0010
0100
0110
0000
0011
0110
1001

2、verilog代码实现
       2.1节介绍ROM使用Distributed Memory Generator生成的IP核。2.2节介绍使用Xilinx原语生成的ROM(其实使用的也是分布式资源)。Block Memeory Generator生成的IP核使用的是BlockRAM,当存储大量数据时,使用比较方便,和Distributed Memory Generator类似,不再详细介绍。
2.1 ROM采用分布式资源生成的IP核
 

基于ROM的乘法器

设置ROM的位宽,深度等。
 

基于ROM的乘法器

ROM进行初始化,采用coe文件。
 

基于ROM的乘法器

coe文件的内容为:
MEMORY_INITIALIZATION_RADIX=10;
MEMORY_INITIALIZATION_VECTOR=
0,
0,
0,
0,
0,
1,
2,
3,
0,
2,
4,
6,
0,
3,
6,
9;
说明:MEMORY_INITIALIZATION_RADIX=10,表明下面的数据为10进制,还可以取值2,8,16。
MEMORY_INITIALIZATION_VECTOR=,后面的内容依次为地址(0-15)所存储的内容,中间用逗号分隔,最后用分号。
最后生成ROM核。
verilog代码实现
module rom_top(
         input clk,
         input rst_n,
         input [3:0] a,
         input [3:0] b,
         output [7:0] c
         );
         wire [3:0] spo0,spo1,spo2,spo3;
         wire [3:0] a0,a1,a2,a3;
        
         assign a0={a[3:2],b[3:2]};
         assign a1={a[3:2],b[1:0]};
         assign a2={a[1:0],b[3:2]};
         assign a3={a[1:0],b[1:0]};
 
         reg [7:0] spo0_r,spo1_r,spo2_r,spo3_r;
         always@(posedge clk) begin
                   if(!rst_n) begin
                            spo0_r<=0;spo1_r<=0;spo2_r<=0;spo3_r<=0;
                   end
                   else begin
                            spo0_r<={spo0,4'b0000};
                            spo1_r<={2'b00,spo1,2'b00};
                            spo2_r<={2'b00,spo2,2'b00};
                            spo3_r<={spo3};
                   end
         end
         assign c=(spo0_r+spo1_r)+(spo2_r+spo3_r);
        
         // Instantiate the Unit Under Test (UUT)
         rom uut0 (          //rom为生成的IP核
                   .a(a0),
                   .spo(spo0)
         );
         rom uut1 (
                   .a(a1),
                   .spo(spo1)
         );
         rom uut2 (
                   .a(a2),
                   .spo(spo2)
         );
         rom uut3 (
                   .a(a3),
                   .spo(spo3)
         );
        
         endmodule
                  
testbench文件
         module romtop_tb;
 
         // Inputs
         reg clk;
         reg rst_n;
         reg [3:0] a;
         reg [3:0] b;
 
         // Outputs
         wire [7:0] c;
 
         // Instantiate the Unit Under Test (UUT)
         rom_top uut (
                   .clk(clk),
                   .rst_n(rst_n),
                   .a(a),
                   .b(b),
                   .c(c)
         );
        
         always #5 clk = ~clk;
         initial begin
                   // Initialize Inputs
                   clk = 0;
                   rst_n = 0;
                   a = 0;
                   b = 0;
                   // Wait 100 ns for global reset to finish
                   #100;
                   rst_n=1;
      #10;
                   #3;
                   a=2;b=6;
                   #10;
                   a=3;b=7;
                   #10;
                   a=15;b=9;
                   #10;
                   a=12;b=11;
                   #10;
                   a=6;b=7;
                   #100 $stop;
                   // Add stimulus here
 
         end
     
endmodule
在modelsim中仿真生成的波形图:axb=c.   2x6=12 3x7=21 15x9=135
 

基于ROM的乘法器

2.2 ROM采用Xilinx原语生成
verilog代码
module d_rom_top(
       input clk,
       input rst_n,
       input [3:0] a,
       input [3:0] b,
       output [7:0] c
      
    );
        
       wire [3:0] addra,addrb,addrc,addrd;
       assign addra={a[3:2],b[3:2]};
       assign addrb={a[3:2],b[1:0]};
       assign addrc={a[1:0],b[3:2]};
       assign addrd={a[1:0],b[1:0]};      
        
       wire [3:0] Oa,Ob,Oc,Od;
       reg [7:0] Oa_r,Ob_r,Oc_r,Od_r;
       always@(posedge clk)begin
              if(!rst_n) begin
                     Oa_r<=0;Ob_r<=0;Oc_r<=0;Od_r<=0;
              end
              else begin
                     Oa_r<={Oa,4'b0000};
                     Ob_r<={2'b00,Ob,2'b00};
                     Oc_r<={2'b00,Oc,2'b00};
                     Od_r<={4'b0000,Od};
              end
       end
      
       assign c=Oa_r+Ob_r+Oc_r+Od_r;
      
       genvar i0,i1,i2,i3;
       generate
              for(i0=0;i0<4;i0=i0+1) begin :rom_unita
                     if(i0==0) begin
                            ROM16X1 #(.INIT(16'b1010_0000_1010_0000))
                                   rom_0 (.O(Oa[0]),.A0(addra[0]),.A1(addra[1]),.A2(addra[2]),.A3(addra[3]));
                     end
                     else if(i0==1)begin             
                            ROM16X1 #(.INIT(16'b0110_1010_1100_0000))
                                   rom_1 (.O(Oa[1]),.A0(addra[0]),.A1(addra[1]),.A2(addra[2]),.A3(addra[3]));
                     end
                     else if(i0==2)begin             
                            ROM16X1 #(.INIT(16'b0100_1100_0000_0000))
                                   rom_2 (.O(Oa[2]),.A0(addra[0]),.A1(addra[1]),.A2(addra[2]),.A3(addra[3]));
                     end
                     else begin           
                            ROM16X1 #(.INIT(16'b1000_0000_0000_0000))
                                   rom_3 (.O(Oa[3]),.A0(addra[0]),.A1(addra[1]),.A2(addra[2]),.A3(addra[3]));
                     end 
              end
       endgenerate
       generate
              for(i1=0;i1<4;i1=i1+1) begin :rom_unitb
                     if(i1==0) begin
                            ROM16X1 #(.INIT(16'b1010_0000_1010_0000))
                                   rom_0 (.O(Ob[0]),.A0(addrb[0]),.A1(addrb[1]),.A2(addrb[2]),.A3(addrb[3]));
                     end
                     else if(i1==1)begin             
                            ROM16X1 #(.INIT(16'b0110_1010_1100_0000))
                                   rom_1 (.O(Ob[1]),.A0(addrb[0]),.A1(addrb[1]),.A2(addrb[2]),.A3(addrb[3]));
                     end
                     else if(i1==2)begin             
                            ROM16X1 #(.INIT(16'b0100_1100_0000_0000))
                                   rom_2 (.O(Ob[2]),.A0(addrb[0]),.A1(addrb[1]),.A2(addrb[2]),.A3(addrb[3]));
                     end
                     else begin           
                            ROM16X1 #(.INIT(16'b1000_0000_0000_0000))
                                   rom_3 (.O(Ob[3]),.A0(addrb[0]),.A1(addrb[1]),.A2(addrb[2]),.A3(addrb[3]));
                     end 
              end
       endgenerate
       generate
              for(i2=0;i2<4;i2=i2+1) begin :rom_unitc
                     if(i2==0) begin
                            ROM16X1 #(.INIT(16'b1010_0000_1010_0000))
                                   rom_0 (.O(Oc[0]),.A0(addrc[0]),.A1(addrc[1]),.A2(addrc[2]),.A3(addrc[3]));
                     end
                     else if(i2==1)begin             
                            ROM16X1 #(.INIT(16'b0110_1010_1100_0000))
                                   rom_1 (.O(Oc[1]),.A0(addrc[0]),.A1(addrc[1]),.A2(addrc[2]),.A3(addrc[3]));
                     end
                     else if(i2==2)begin             
                            ROM16X1 #(.INIT(16'b0100_1100_0000_0000))
                                   rom_2 (.O(Oc[2]),.A0(addrc[0]),.A1(addrc[1]),.A2(addrc[2]),.A3(addrc[3]));
                     end
                     else begin           
                            ROM16X1 #(.INIT(16'b1000_0000_0000_0000))
                                   rom_3 (.O(Oc[3]),.A0(addrc[0]),.A1(addrc[1]),.A2(addrc[2]),.A3(addrc[3]));
                     end 
              end
       endgenerate
       generate
              for(i3=0;i3<4;i3=i3+1) begin :rom_unitd
                     if(i3==0) begin
                            ROM16X1 #(.INIT(16'b1010_0000_1010_0000))
                                   rom_0 (.O(Od[0]),.A0(addrd[0]),.A1(addrd[1]),.A2(addrd[2]),.A3(addrd[3]));
                     end
                     else if(i3==1)begin             
                            ROM16X1 #(.INIT(16'b0110_1010_1100_0000))
                                   rom_1 (.O(Od[1]),.A0(addrd[0]),.A1(addrd[1]),.A2(addrd[2]),.A3(addrd[3]));
                     end
                     else if(i3==2)begin             
                            ROM16X1 #(.INIT(16'b0100_1100_0000_0000))
                                   rom_2 (.O(Od[2]),.A0(addrd[0]),.A1(addrd[1]),.A2(addrd[2]),.A3(addrd[3]));
                     end
                     else begin           
                            ROM16X1 #(.INIT(16'b1000_0000_0000_0000))
                                   rom_3 (.O(Od[3]),.A0(addrd[0]),.A1(addrd[1]),.A2(addrd[2]),.A3(addrd[3]));
                     end 
              end
       endgenerate
 
endmodule
 
testbench:
module d_rom_top_tb;
 
         // Inputs
         reg clk;
         reg rst_n;
         reg [3:0] a;
         reg [3:0] b;
 
         // Outputs
         wire [7:0] c;
 
         // Instantiate the Unit Under Test (UUT)
         d_rom_top uut (
                   .clk(clk),
                   .rst_n(rst_n),
                   .a(a),
                   .b(b),
                   .c(c)
         );
        
         always #5 clk=~clk;
         initial begin
                   // Initialize Inputs
                   clk = 0;
                   rst_n = 0;
                   a = 0;
                   b = 0;
                   // Wait 100 ns for global reset to finish
                   #100;
                   rst_n=1;
      #10;
                   #3;
                   a=2;b=6;
                   #10;
                   a=3;b=7;
                   #10;
                   a=15;b=9;
                   #10;
                   a=12;b=11;
                   #10;
                   a=6;b=7;
 
 
                  
         end
     
endmodule
仿真图形:

基于ROM的乘法器

 

附件:http://down.51cto.com/data/2362729
推荐阅读:
  1. android rom 刷机出现的错误
  2. rom区别于ram的特点有哪些

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

rom乘法器 om

上一篇:golang中map的作用

下一篇:java读写文件出现乱码的解决方法

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》