Python求正态分布曲线下面积实例

发布时间:2020-09-15 09:42:18 作者:qwerty_bibabo
来源:脚本之家 阅读:308

正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线。这种分布的概率密度函数为:

Python求正态分布曲线下面积实例

其中,μ为均值,σ为标准差。

求正态分布曲线下面积有3σ原则:

Python求正态分布曲线下面积实例

正态曲线下,横轴区间(μ-σ,μ+σ)内的面积为68.268949%,横轴区间(μ-1.96σ,μ+1.96σ)内的面积为95.449974%,横轴区间(μ-2.58σ,μ+2.58σ)内的面积为99.730020%。

求任意区间内曲线下的面积,通常可以引用scipy包中的相关函数

norm函数生成一个给定均值和标准差的正态分布,cdf(x)表示-∞到x的概率

例:(2,1)正态分布下 2-3曲线下的面积

>>> import scipy.stats
>>> scipy.stats.norm(2,1).cdf(3)-0.5
0.34134474606854293

由于有时候不便于引用scipy包,自编这一函数也很简单

求积分函数参考:复化梯形求积分

cdfd(a,b,u,o)

a,b 为区间起始范围,u,o分别为正态分布的均值和标准差。

import math

def pdf(x):
  return math.exp(-(x) ** 2 / (2)) / (math.sqrt(2 * math.pi))

def sum_fun_xk(xk, func):
  return sum([func(each) for each in xk])

def integral(a, b, n, func):
  h = (b - a)/float(n)
  xk = [a + i*h for i in range(1, n)]
  return h/2 * (func(a) + 2 * sum_fun_xk(xk, func) + func(b))

def cdfd(a,b,u,o):
  return integral((a-u)/o,(b-u)/o,10000,pdf)

cdfd(2,3,2,1)

Out: 0.3413399854638336

以上这篇Python求正态分布曲线下面积实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持亿速云。

推荐阅读:
  1. 利用Python求阴影部分的面积实例代码
  2. 用python求圆面积的方法

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

python 正态分布 曲线

上一篇:html与xhtml和xml有哪些区别

下一篇:div与span有哪些区别

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》