您好,登录后才能下订单哦!
密码登录
登录注册
点击 登录注册 即表示同意《亿速云用户服务条款》
构建一个二阶多项式:x^2 - 4x + 3
多项式求解
>>> p = np.poly1d([1,-4,3]) #二阶多项式系数 >>> p(0) #自变量为0时多项式的值 3 >>> p.roots #多项式的根 array([3., 1.]) >>> p(p.roots) #多项式根处的值 array([0., 0.]) >>> p.order #多项式的阶数 2 >>> p.coeffs #多项式的系数 array([ 1, -4, 3]) >>>
多项式拟合
用三阶多项式去拟合
import matplotlib.pyplot as plt import numpy as np n_dot = 20 n_order = 3 #阶数 x = np.linspace(0,1,n_dot) #[0,1]之间创建20个点 y = np.sqrt(x) + 0.2*np.random.rand(n_dot) p = np.poly1d(np.polyfit(x,y,n_order)) #拟合并构造出一个3次多项式 print(p.coeffs) #输出拟合的系数,顺序从高阶低阶 #画出拟合出来的多项式所表达的曲线以及原始的点 t = np.linspace(0,1,200) plt.plot(x,y,'ro',t,p(t),'-') plt.show()
以上这篇在python中利用numpy求解多项式以及多项式拟合的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持亿速云。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。