您好,登录后才能下订单哦!
这期内容当中小编将会给大家带来有关怎么在C#中利用栈实现加减乘除运算,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
类Parser 的parse方法,比如给一个“3+4i”的字符串,返回给你一个3个结点的队,队列第一个元素是一个ComplexNumber对象,实数域为3,队列的第二个元素是“+”号,队列第三个元素是一个ComplexNumber对象,实数域为0,虚数域为4。
类Operators 用于测试字符是否是运算符,用来进行控制运算,比较运算符优先级....
类Handler 给一个字符串,他帮你处理,返回给你一个结果。其实就是调一下Parser类的方法去解析一下字符串,然后算一下结果,然后返回结果。
类ComplexNumber,就是复数类啊,不用说了,提供实数域虚数域,getset方法,加减乘除以及toString()方法
using System; using System.Collections; using System.Text; namespace MySpace{ class Parser{ public static Queue Parse(string input){ char[] arr = input.ToCharArray(); Queue queue = new Queue(); foreach(char x in arr){ queue.Enqueue(x); } queue = ParseStringQueue(queue); return queue; } //传入字符串队列,返回封装好的队列。 //ComplexNumber对象或char类型运算符各占用一个结点 private static Queue ParseStringQueue(Queue queue){ Queue secondQ = new Queue(); char c; StringBuilder sb = null; string temp; int count = queue.Count; bool flag = false; //false表示允许创建新SB对象进行缓存数字字符串 for(int i=0;i<count;i++){ c = (char)queue.Dequeue(); if(!Operators.Contains(c)){ //如果扫描到的不是运算符,则将其加入到buffer尾部 if(!flag){ flag = true; sb = new StringBuilder(); } sb.Append(c); } if(Operators.Contains(c) || queue.Count == 0){ //如果扫描到的是运算符,则将缓冲区中的串加入队尾 if(sb != null && flag == true){ temp = sb.ToString(); try{ if(temp.EndsWith("i")){ if(temp.Length==1){ secondQ.Enqueue(new ComplexNumber(0,1)); }else{ //i前有数字则开出数字部分。 temp = temp.Substring(0,temp.Length-1); secondQ.Enqueue(new ComplexNumber(0,double.Parse(temp))); } }else{ secondQ.Enqueue(new ComplexNumber(double.Parse(temp),0)); } sb = null; flag = false; }catch(Exception e){ Console.WriteLine("Error"); } } //如果是运算符,则最后将运算符放入队。 if(Operators.Contains(c)){ secondQ.Enqueue(c); } } } return secondQ; } } class ComplexNumber{ private double m_dRealPart; private double m_dImaginPart; public ComplexNumber(){ m_dRealPart = 0.0; m_dImaginPart = 0.0; } public ComplexNumber(double r,double i){ m_dRealPart = r; m_dImaginPart = i; } public ComplexNumber(ComplexNumber c){ m_dRealPart = c.GetRealPart(); m_dImaginPart = c.GetImaginaryPart(); } //get,set方法 public double GetRealPart(){ return m_dRealPart; } public double GetImaginaryPart(){ return m_dImaginPart; } public void SetRealPart(double d){ m_dRealPart = d; } public void SetImaginaryPart(double d){ m_dImaginPart = d; } public ComplexNumber ComplexAdd(ComplexNumber c){ return new ComplexNumber(this.m_dRealPart + c.GetRealPart(),this.m_dImaginPart + c.GetImaginaryPart()); } public ComplexNumber ComplexAdd(double c){ return new ComplexNumber( this.m_dRealPart + c, this.m_dImaginPart); } public ComplexNumber ComplexMinus(ComplexNumber c){ return new ComplexNumber(this.m_dRealPart - c.GetRealPart(),this.m_dImaginPart - c.GetImaginaryPart()); } public ComplexNumber ComplexMinus(double c){ return new ComplexNumber(this.m_dRealPart - c, this.m_dImaginPart); } //乘 public ComplexNumber ComplexMulti(ComplexNumber c){ return new ComplexNumber( this.m_dRealPart * c.GetRealPart() - this.m_dImaginPart * c.GetImaginaryPart(), this.m_dRealPart * c.GetImaginaryPart() + this.m_dImaginPart * c.GetRealPart()); } public ComplexNumber ComplexMulti(double c){ return new ComplexNumber( this.m_dRealPart * c, this.m_dImaginPart * c); } //除 public ComplexNumber ComplexDivision(ComplexNumber c){ return new ComplexNumber((this.m_dRealPart*c.GetRealPart() +this.m_dImaginPart*c.GetImaginaryPart())/(c.GetRealPart()*c.GetRealPart()+c.GetImaginaryPart()*c.GetImaginaryPart()) ,(this.m_dImaginPart*c.GetRealPart()-this.m_dRealPart*c.GetImaginaryPart()) /(c.GetRealPart()*c.GetRealPart()+c.GetImaginaryPart()*c.GetImaginaryPart())); } public ComplexNumber ComplexDivision(double c){ return new ComplexNumber(this.m_dRealPart/c,this.m_dImaginPart/c); } public override String ToString(){ return "(" + m_dRealPart + " + " + m_dImaginPart + " i" + ")"; } } class Operators{ static char[][] signOperator; static Operators(){ signOperator = new char[3][]; signOperator[0] = new char[2]; signOperator[0][0]='*'; signOperator[0][1]='/'; signOperator[1] = new char[2]; signOperator[1][0]='+'; signOperator[1][1]='-'; signOperator[2] = new char[2]; signOperator[2][0]='('; signOperator[2][1]=')'; } public static int ComparePriority(char firstSign,char secondSign){ int priorityF = 0,priorityS = 0; for(int i = 0; i<signOperator.Length;i++){ foreach(char x in signOperator[i]){ if(firstSign == x){ priorityF = i; } if(secondSign == x){ priorityS = i; } } } return (priorityF-priorityS); } public static bool Contains(char x){ foreach(char[] arr in signOperator){ foreach(char y in arr){ if(x == y){ return true; } } } return false; } public static ComplexNumber Compute(char ope,ComplexNumber c1,ComplexNumber c2){ ComplexNumber result = null; switch(ope){ case '+':result=c1.ComplexAdd(c2);break; case '-':result=c2.ComplexMinus(c1);break; case '*':result=c1.ComplexMulti(c2);break; case '/':result=c1.ComplexDivision(c2);break; } return result; } } class Handler{ private Stack complexNumberStack = new Stack(); private Stack operatorStack = new Stack(); private static Handler handler = new Handler(); private Handler(){} public static Handler GetHandler(){ return handler; } public ComplexNumber Process(string inputString){ Queue queue = Parser.Parse(inputString); ComplexNumber complexNumber = null; char c,top,ct; int count = queue.Count; for(int i=0;i<count;i++){ Object obj = queue.Dequeue(); if(obj is char){ c = (char)obj; if(operatorStack.Count == 0){ operatorStack.Push(c); }else{ top = (char)operatorStack.Peek(); if(c=='('){ operatorStack.Push(c); //左括号直接压入。不判断栈顶 }else if(c==')'){ //右括号压入前观察栈顶,若栈顶是左括号,则弹出栈顶的左括号 //否则弹出栈顶运算符,从数栈中弹出操作数进行运算,并将结果重新压入数栈,直到遇到左括号 while((ct=(char)operatorStack.Pop())!='('){ ComplexNumber c1 = (ComplexNumber)complexNumberStack.Pop(); ComplexNumber c2 = (ComplexNumber)complexNumberStack.Pop(); ComplexNumber c3 = Operators.Compute(ct,c1,c2); complexNumberStack.Push(c3); } }else if(Operators.ComparePriority(top,c)<0){ //若即将压入的运算符不是括号,则比较栈顶运算符和即将压入的运算符的优先级 //如果栈顶优先级高,则将栈顶运算符取出运算,直到栈顶优先级不大于其。 while(Operators.ComparePriority((char)operatorStack.Peek(),c)<0){ ComplexNumber c1 = (ComplexNumber)complexNumberStack.Pop(); ComplexNumber c2 = (ComplexNumber)complexNumberStack.Pop(); ComplexNumber c3 = Operators.Compute((char)operatorStack.Pop(),c1,c2); complexNumberStack.Push(c3); operatorStack.Push(c); } }else{ operatorStack.Push(c); } } }else if(obj is ComplexNumber) { complexNumber = (ComplexNumber)obj; complexNumberStack.Push(complexNumber); } if(queue.Count == 0){ if(operatorStack.Count != 0){ while(operatorStack.Count != 0){ c = (char)operatorStack.Pop(); ComplexNumber c1 = (ComplexNumber)complexNumberStack.Pop(); ComplexNumber c2 = (ComplexNumber)complexNumberStack.Pop(); ComplexNumber c3 = Operators.Compute(c,c1,c2); complexNumberStack.Push(c3); } } } } return (ComplexNumber)complexNumberStack.Pop(); } } class PrimeClass{ static void Main(string[] args){ String input; Handler handler = Handler.GetHandler(); while(!(input = Console.ReadLine()).Equals("END")){ ComplexNumber c = (ComplexNumber)handler.Process(input); Console.WriteLine(c); }; } } }
Don_Yao整合修复一些bug后的代码
using System; using System.Collections; using System.Collections.Generic; using System.Text; // 解析计算字符串公式 namespace CalcuStrFormula { // 处理类 class Handler { private Stack _complexNumberStack = new Stack(); private Stack _operatorStack = new Stack(); private Parser _parser = new Parser(); private Operators _operators = new Operators(); private static Handler _instance; public static Handler instance { get { if (_instance == null) { _instance = new Handler(); } return _instance; } } public ComplexNumber Process(string inputString) { _complexNumberStack.Clear(); _operatorStack.Clear(); Queue<object> queue = _parser.Parse(inputString); ComplexNumber complexNumber = null; char op, topOp; int count = queue.Count; for (int i = 0; i < count; i++) { object obj = queue.Dequeue(); if (obj is char) { op = (char)obj; if (_operatorStack.Count == 0) { _operatorStack.Push(op); } else { topOp = (char)_operatorStack.Peek(); if (op == '(') { _operatorStack.Push(op); // 左括号直接压入。不判断栈顶 } else if (op == ')') { // 右括号压入前观察栈顶,若栈顶是左括号,则弹出栈顶的左括号 // 否则弹出栈顶运算符,从数栈中弹出操作数进行运算,并将结果重新压入数栈,直到遇到左括号 while ((topOp = (char)_operatorStack.Pop()) != '(') { ComplexNumber c1 = (ComplexNumber)_complexNumberStack.Pop(); // 符号右边数 ComplexNumber c2 = null; // 符号左边数 if (_operators.IsTwoNumOperator(topOp)) { c2 = (ComplexNumber)_complexNumberStack.Pop(); } ComplexNumber c3 = _operators.Compute(topOp, c2, c1); _complexNumberStack.Push(c3); } } else if (_operators.ComparePriority(topOp, op) <= 0) { // 若即将压入的运算符不是括号,则比较栈顶运算符和即将压入的运算符的优先级 // 如果栈顶优先级高,则将栈顶运算符取出运算,直到栈顶优先级不大于其。 while (_operatorStack.Count != 0 && _operators.ComparePriority((char)_operatorStack.Peek(), op) <= 0) { topOp = (char)_operatorStack.Pop(); ComplexNumber c1 = (ComplexNumber)_complexNumberStack.Pop(); // 符号右边数 ComplexNumber c2 = null; // 符号左边数 if (_operators.IsTwoNumOperator(topOp)) { c2 = (ComplexNumber)_complexNumberStack.Pop(); } ComplexNumber c3 = _operators.Compute(topOp, c2, c1); _complexNumberStack.Push(c3); } _operatorStack.Push(op); } else { _operatorStack.Push(op); } } } else if (obj is ComplexNumber) { complexNumber = (ComplexNumber)obj; _complexNumberStack.Push(complexNumber); } if (queue.Count == 0) { while (_operatorStack.Count != 0) { topOp = (char)_operatorStack.Pop(); ComplexNumber c1 = (ComplexNumber)_complexNumberStack.Pop(); // 符号右边数 ComplexNumber c2 = null; // 符号左边数 if (_operators.IsTwoNumOperator(topOp)) { c2 = (ComplexNumber)_complexNumberStack.Pop(); } ComplexNumber c3 = _operators.Compute(topOp, c2, c1); _complexNumberStack.Push(c3); } } } return (ComplexNumber)_complexNumberStack.Pop(); } } // 3+4i解析成Queue包含 3, +, 4i public class Parser { private Operators _operators = new Operators(); public Queue<object> Parse(string input) { input = input.Replace(" ", ""); if (input.StartsWith("-")) input = '0' + input; char[] arr = input.ToCharArray(); Queue<char> queueChar = new Queue<char>(); foreach (char x in arr) { queueChar.Enqueue(x); } Queue<object> queueResult = ParseStringQueue(queueChar); return queueResult; } // 传入字符串队列,返回封装好的队列。 // ComplexNumber对象或char类型运算符各占用一个结点 private Queue<object> ParseStringQueue(Queue<char> queue) { Queue<object> secondQ = new Queue<object>(); char c; StringBuilder sb = null; string temp; int count = queue.Count; bool flag = false; // false表示允许创建新SB对象进行缓存数字字符串 for (int i = 0; i < count; i++) { c = queue.Dequeue(); if (!_operators.Contains(c)) { // 如果扫描到的不是运算符,则将其加入到buffer尾部 if (!flag) { flag = true; sb = new StringBuilder(); } sb.Append(c); } if (_operators.Contains(c) || queue.Count == 0) { // 如果扫描到的是运算符,则将缓冲区中的串加入队尾 if (sb != null && flag == true) { temp = sb.ToString(); try { if (temp.EndsWith("i")) { if (temp.Length == 1) { secondQ.Enqueue(new ComplexNumber(0, 1)); } else { // i前有数字则开出数字部分。 temp = temp.Substring(0, temp.Length - 1); secondQ.Enqueue(new ComplexNumber(0, double.Parse(temp))); } } else { secondQ.Enqueue(new ComplexNumber(double.Parse(temp), 0)); } sb = null; flag = false; } catch (Exception e) { UnityEngine.Debug.Log("Error " + e.ToString()); } } // 如果是运算符,则最后将运算符放入队。 if (_operators.Contains(c)) { secondQ.Enqueue(c); } } } return secondQ; } } // 复数类,提供实数域虚数域,getset方法,加减乘除以及toString()方法 class ComplexNumber { private double _realPart; // 实数部分 private double _imaginPart; // 虚数部分 public ComplexNumber() { _realPart = 0.0; _imaginPart = 0.0; } public ComplexNumber(double r, double i) { _realPart = r; _imaginPart = i; } public ComplexNumber(ComplexNumber c) { _realPart = c.GetRealPart(); _imaginPart = c.GetImaginaryPart(); } // get,set方法 public double GetRealPart() { return _realPart; } public double GetImaginaryPart() { return _imaginPart; } public void SetRealPart(double d) { _realPart = d; } public void SetImaginaryPart(double d) { _imaginPart = d; } // 加 public ComplexNumber ComplexAdd(ComplexNumber c) { return new ComplexNumber(_realPart + c.GetRealPart(), _imaginPart + c.GetImaginaryPart()); } public ComplexNumber ComplexAdd(double c) { return new ComplexNumber(_realPart + c, _imaginPart); } // 减 public ComplexNumber ComplexMinus(ComplexNumber c) { return new ComplexNumber(_realPart - c.GetRealPart(), _imaginPart - c.GetImaginaryPart()); } public ComplexNumber ComplexMinus(double c) { return new ComplexNumber(_realPart - c, _imaginPart); } // 乘 public ComplexNumber ComplexMulti(ComplexNumber c) { return new ComplexNumber( _realPart * c.GetRealPart() - _imaginPart * c.GetImaginaryPart(), _realPart * c.GetImaginaryPart() + _imaginPart * c.GetRealPart()); } public ComplexNumber ComplexMulti(double c) { return new ComplexNumber(_realPart * c, _imaginPart * c); } // 除 public ComplexNumber ComplexDivision(ComplexNumber c) { return new ComplexNumber((_realPart * c.GetRealPart() + _imaginPart * c.GetImaginaryPart()) / (c.GetRealPart() * c.GetRealPart() + c.GetImaginaryPart() * c.GetImaginaryPart()) , (_imaginPart * c.GetRealPart() - _realPart * c.GetImaginaryPart()) / (c.GetRealPart() * c.GetRealPart() + c.GetImaginaryPart() * c.GetImaginaryPart())); } public ComplexNumber ComplexDivision(double c) { return new ComplexNumber(_realPart / c, _imaginPart / c); } // 幂 public ComplexNumber ComplexPow(ComplexNumber c) { int pow; if (int.TryParse(c.GetRealPart().ToString(), out pow)) { ComplexNumber origin = new ComplexNumber(this); ComplexNumber multi = new ComplexNumber(this); for (int i = 0; i < pow - 1; i++) { origin = origin.ComplexMulti(multi); } return origin; } else { return ComplexPow(c.GetRealPart()); } } public ComplexNumber ComplexPow(double c) { return new ComplexNumber(Math.Pow(_realPart, c), 0.0); } // 最小值 public ComplexNumber ComplexMinimum(ComplexNumber c) { if (_realPart <= c.GetRealPart()) return this; return c; } // 最大值 public ComplexNumber ComplexMaximum(ComplexNumber c) { if (_realPart >= c.GetRealPart()) return this; return c; } // 转int public ComplexNumber ToFloorInt() { _realPart = Math.Floor(_realPart); return this; } public override string ToString() { return "(" + _realPart + " + " + _imaginPart + " i" + ")"; } } // 操作符类 class Operators { private char[][] _signOperator; public Operators() { // 从上到下,优先级由高到低 _signOperator = new char[4][]; _signOperator[0] = new char[4]; _signOperator[0][0] = '^'; _signOperator[0][1] = 's'; // 最小值 _signOperator[0][2] = 'b'; // 最大值 _signOperator[0][3] = 'i'; // int值 _signOperator[1] = new char[2]; _signOperator[1][0] = '*'; _signOperator[1][1] = '/'; _signOperator[2] = new char[2]; _signOperator[2][0] = '+'; _signOperator[2][1] = '-'; _signOperator[3] = new char[2]; _signOperator[3][0] = '('; _signOperator[3][1] = ')'; } // 比较操作符优先级 public int ComparePriority(char firstSign, char secondSign) { int priorityF = 0, priorityS = 0; for (int i = 0; i < _signOperator.Length; i++) { foreach (char x in _signOperator[i]) { if (firstSign == x) { priorityF = i; } if (secondSign == x) { priorityS = i; } } } return (priorityF - priorityS); } // 是否是需要两个参数的操作符 public bool IsTwoNumOperator(char op) { if (op == 'i') return false; return true; } public bool Contains(char x) { if (x == '(' || x == ')') { UnityEngine.Debug.LogError(x + "为中文字符,请改为英文字符"); } foreach (char[] arr in _signOperator) { foreach (char y in arr) { if (x == y) { return true; } } } return false; } public ComplexNumber Compute(char op, ComplexNumber c1, ComplexNumber c2) { ComplexNumber result = null; switch (op) { case '+': result = c1.ComplexAdd(c2); break; case '-': result = c1.ComplexMinus(c2); break; case '*': result = c1.ComplexMulti(c2); break; case '/': result = c1.ComplexDivision(c2); break; case '^': result = c1.ComplexPow(c2); break; case 's': result = c1.ComplexMinimum(c2); break; case 'b': result = c1.ComplexMaximum(c2); break; case 'i': result = c2.ToFloorInt(); break; } return result; } } }
上述就是小编为大家分享的怎么在C#中利用栈实现加减乘除运算了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。