怎么在C#中利用栈实现加减乘除运算

发布时间:2021-04-17 17:17:07 作者:Leah
来源:亿速云 阅读:190

这期内容当中小编将会给大家带来有关怎么在C#中利用栈实现加减乘除运算,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

   类Parser   的parse方法,比如给一个“3+4i”的字符串,返回给你一个3个结点的队,队列第一个元素是一个ComplexNumber对象,实数域为3,队列的第二个元素是“+”号,队列第三个元素是一个ComplexNumber对象,实数域为0,虚数域为4。

    类Operators    用于测试字符是否是运算符,用来进行控制运算,比较运算符优先级....

    类Handler   给一个字符串,他帮你处理,返回给你一个结果。其实就是调一下Parser类的方法去解析一下字符串,然后算一下结果,然后返回结果。

 类ComplexNumber,就是复数类啊,不用说了,提供实数域虚数域,getset方法,加减乘除以及toString()方法

using System;
using System.Collections;
using System.Text;
namespace MySpace{
	class Parser{
		public static Queue Parse(string input){
			char[] arr = input.ToCharArray();
			Queue queue = new Queue();
			foreach(char x in arr){
				queue.Enqueue(x);
			}
			queue = ParseStringQueue(queue);
			return queue;
		}
		
		//传入字符串队列,返回封装好的队列。
		//ComplexNumber对象或char类型运算符各占用一个结点
		private static Queue ParseStringQueue(Queue queue){
			Queue secondQ = new Queue();
			char c;
			StringBuilder sb = null;
			string temp;
			int count = queue.Count;
			bool flag = false; //false表示允许创建新SB对象进行缓存数字字符串
			for(int i=0;i<count;i++){
				c = (char)queue.Dequeue();
				
				if(!Operators.Contains(c)){
					//如果扫描到的不是运算符,则将其加入到buffer尾部
					if(!flag){
						flag = true;
						sb = new StringBuilder();
					}
					sb.Append(c);
				}
				if(Operators.Contains(c) || queue.Count == 0){
					//如果扫描到的是运算符,则将缓冲区中的串加入队尾
					if(sb != null && flag == true){
						temp = sb.ToString();
						try{
							if(temp.EndsWith("i")){
									if(temp.Length==1){
										secondQ.Enqueue(new ComplexNumber(0,1));
									}else{
									//i前有数字则开出数字部分。
										temp = temp.Substring(0,temp.Length-1);
										secondQ.Enqueue(new ComplexNumber(0,double.Parse(temp)));
									}
								
							}else{
								secondQ.Enqueue(new ComplexNumber(double.Parse(temp),0));
							}
							sb = null;
							flag = false;
						}catch(Exception e){
							Console.WriteLine("Error");
						}
					}
					//如果是运算符,则最后将运算符放入队。
					if(Operators.Contains(c)){
						secondQ.Enqueue(c);
					}
				}
			}
			
			return secondQ;
		}
	}
	class ComplexNumber{
		private double m_dRealPart;
		private double m_dImaginPart;
		public ComplexNumber(){
			m_dRealPart = 0.0;
			m_dImaginPart = 0.0;
		}
		public ComplexNumber(double r,double i){
			m_dRealPart = r;
			m_dImaginPart = i;
		}
		public ComplexNumber(ComplexNumber c){
			m_dRealPart = c.GetRealPart();
			m_dImaginPart = c.GetImaginaryPart();
		}
		//get,set方法
		public double GetRealPart(){
			return m_dRealPart;
		}
		public double GetImaginaryPart(){
		    return m_dImaginPart;
		}
		public void SetRealPart(double d){
		    m_dRealPart = d;
		}
		public void SetImaginaryPart(double d){
		    m_dImaginPart = d;
		}
		public ComplexNumber ComplexAdd(ComplexNumber c){
		    return new ComplexNumber(this.m_dRealPart + c.GetRealPart(),this.m_dImaginPart + c.GetImaginaryPart());
		}
		public ComplexNumber ComplexAdd(double c){
			return new ComplexNumber(
		    this.m_dRealPart + c, 
			this.m_dImaginPart);
		}
		
		public ComplexNumber ComplexMinus(ComplexNumber c){
		   return new ComplexNumber(this.m_dRealPart - c.GetRealPart(),this.m_dImaginPart - c.GetImaginaryPart());
		}
		public ComplexNumber ComplexMinus(double c){
			return new ComplexNumber(this.m_dRealPart - c, this.m_dImaginPart);
		}
		//乘
		public ComplexNumber ComplexMulti(ComplexNumber c){
			return new ComplexNumber(
			this.m_dRealPart * c.GetRealPart() 
			- this.m_dImaginPart * c.GetImaginaryPart(),
			this.m_dRealPart * 
			c.GetImaginaryPart()
			+ this.m_dImaginPart * 
			c.GetRealPart());
		}
		public ComplexNumber ComplexMulti(double c){
			return 
				new ComplexNumber(
					this.m_dRealPart * c,
					this.m_dImaginPart * c);	
		}
		//除
		public ComplexNumber ComplexDivision(ComplexNumber c){
			return 
				new ComplexNumber((this.m_dRealPart*c.GetRealPart()
				+this.m_dImaginPart*c.GetImaginaryPart())/(c.GetRealPart()*c.GetRealPart()+c.GetImaginaryPart()*c.GetImaginaryPart())
				,(this.m_dImaginPart*c.GetRealPart()-this.m_dRealPart*c.GetImaginaryPart())
				/(c.GetRealPart()*c.GetRealPart()+c.GetImaginaryPart()*c.GetImaginaryPart())); 
		}
		public ComplexNumber ComplexDivision(double c){
			return new 
				ComplexNumber(this.m_dRealPart/c,this.m_dImaginPart/c);
		}
	
		public override String ToString(){
		   return "(" + m_dRealPart + " + " + m_dImaginPart + " i" + ")";
		}
	}
	class Operators{
		static char[][] signOperator;
		
		static Operators(){
			signOperator = new char[3][];
			signOperator[0] = new char[2];
			signOperator[0][0]='*';
			signOperator[0][1]='/';
			signOperator[1] = new char[2];
			signOperator[1][0]='+';
			signOperator[1][1]='-';
			signOperator[2] = new char[2];
			signOperator[2][0]='(';
			signOperator[2][1]=')';
		}
		
		public static int ComparePriority(char firstSign,char secondSign){
			int priorityF = 0,priorityS = 0;
			for(int i = 0; i<signOperator.Length;i++){
				foreach(char x in signOperator[i]){
					if(firstSign == x){
						priorityF = i;
					}
					if(secondSign == x){
						priorityS = i;
					}
				}
			}
			
			return (priorityF-priorityS);
		}
		
		public static bool Contains(char x){
			foreach(char[] arr in signOperator){
				foreach(char y in arr){
					if(x == y){
						return true;
					}
				}
			}
			return false;
		}
		
		public static ComplexNumber Compute(char ope,ComplexNumber c1,ComplexNumber c2){
			ComplexNumber result = null;
			switch(ope){
				case '+':result=c1.ComplexAdd(c2);break;
				case '-':result=c2.ComplexMinus(c1);break;
				case '*':result=c1.ComplexMulti(c2);break;
				case '/':result=c1.ComplexDivision(c2);break;
			}
			return result;
		}
	}
	
	class Handler{
		private Stack complexNumberStack = new Stack();
		private Stack operatorStack = new Stack();
		private static Handler handler = new Handler();
		private Handler(){}
		public static Handler GetHandler(){
			return handler;
		}
	
		public ComplexNumber Process(string inputString){
			Queue queue = Parser.Parse(inputString);
			ComplexNumber complexNumber = null;
			char c,top,ct;
			int count = queue.Count;
			for(int i=0;i<count;i++){
				Object obj = queue.Dequeue();
				if(obj is char){
					c = (char)obj;
					if(operatorStack.Count == 0){
						operatorStack.Push(c);
					}else{
						top = (char)operatorStack.Peek();
						if(c=='('){
							operatorStack.Push(c);  //左括号直接压入。不判断栈顶
						}else if(c==')'){	
						//右括号压入前观察栈顶,若栈顶是左括号,则弹出栈顶的左括号
						//否则弹出栈顶运算符,从数栈中弹出操作数进行运算,并将结果重新压入数栈,直到遇到左括号
							while((ct=(char)operatorStack.Pop())!='('){
								ComplexNumber c1 = (ComplexNumber)complexNumberStack.Pop();
								ComplexNumber c2 = (ComplexNumber)complexNumberStack.Pop();
								ComplexNumber c3 = Operators.Compute(ct,c1,c2);
								complexNumberStack.Push(c3);
							}
						}else if(Operators.ComparePriority(top,c)<0){
							//若即将压入的运算符不是括号,则比较栈顶运算符和即将压入的运算符的优先级
							//如果栈顶优先级高,则将栈顶运算符取出运算,直到栈顶优先级不大于其。
							while(Operators.ComparePriority((char)operatorStack.Peek(),c)<0){
								ComplexNumber c1 = (ComplexNumber)complexNumberStack.Pop();
								ComplexNumber c2 = (ComplexNumber)complexNumberStack.Pop();
								ComplexNumber c3 = Operators.Compute((char)operatorStack.Pop(),c1,c2);
								complexNumberStack.Push(c3);
								operatorStack.Push(c);
							}


						}else{
							operatorStack.Push(c);
						}
					}
				}else if(obj is ComplexNumber) {
					complexNumber = (ComplexNumber)obj;
					complexNumberStack.Push(complexNumber);
				}
				
				if(queue.Count == 0){
					if(operatorStack.Count != 0){
						while(operatorStack.Count != 0){								
							c = (char)operatorStack.Pop();
							ComplexNumber c1 = (ComplexNumber)complexNumberStack.Pop();
							ComplexNumber c2 = (ComplexNumber)complexNumberStack.Pop();
							ComplexNumber c3 = Operators.Compute(c,c1,c2);
							complexNumberStack.Push(c3);
						}
					}
				}
			}
			
			return (ComplexNumber)complexNumberStack.Pop();
		}
	}
	class PrimeClass{
		static void Main(string[] args){
			String input;
			Handler handler = Handler.GetHandler();
			while(!(input = Console.ReadLine()).Equals("END")){
				ComplexNumber c = (ComplexNumber)handler.Process(input);
				Console.WriteLine(c);
			};
		}
	}
	
}

Don_Yao整合修复一些bug后的代码

using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;

// 解析计算字符串公式
namespace CalcuStrFormula
{
  // 处理类
  class Handler
  {
    private Stack _complexNumberStack = new Stack();
    private Stack _operatorStack = new Stack();
    private Parser _parser = new Parser();
    private Operators _operators = new Operators();

    private static Handler _instance;
    public static Handler instance
    {
      get
      {
        if (_instance == null)
        {
          _instance = new Handler();
        }
        return _instance;
      }
    }

    public ComplexNumber Process(string inputString)
    {
      _complexNumberStack.Clear();
      _operatorStack.Clear();

      Queue<object> queue = _parser.Parse(inputString);
      ComplexNumber complexNumber = null;
      char op, topOp;
      int count = queue.Count;
      for (int i = 0; i < count; i++)
      {
        object obj = queue.Dequeue();
        if (obj is char)
        {
          op = (char)obj;
          if (_operatorStack.Count == 0)
          {
            _operatorStack.Push(op);
          }
          else
          {
            topOp = (char)_operatorStack.Peek();
            if (op == '(')
            {
              _operatorStack.Push(op); // 左括号直接压入。不判断栈顶
            }
            else if (op == ')')
            {
              // 右括号压入前观察栈顶,若栈顶是左括号,则弹出栈顶的左括号
              // 否则弹出栈顶运算符,从数栈中弹出操作数进行运算,并将结果重新压入数栈,直到遇到左括号
              while ((topOp = (char)_operatorStack.Pop()) != '(')
              {
                ComplexNumber c1 = (ComplexNumber)_complexNumberStack.Pop(); // 符号右边数
                ComplexNumber c2 = null; // 符号左边数
                if (_operators.IsTwoNumOperator(topOp))
                {
                  c2 = (ComplexNumber)_complexNumberStack.Pop();
                }
                ComplexNumber c3 = _operators.Compute(topOp, c2, c1);
                _complexNumberStack.Push(c3);
              }
            }
            else if (_operators.ComparePriority(topOp, op) <= 0)
            {
              // 若即将压入的运算符不是括号,则比较栈顶运算符和即将压入的运算符的优先级
              // 如果栈顶优先级高,则将栈顶运算符取出运算,直到栈顶优先级不大于其。
              while (_operatorStack.Count != 0 && _operators.ComparePriority((char)_operatorStack.Peek(), op) <= 0)
              {
                topOp = (char)_operatorStack.Pop();
                ComplexNumber c1 = (ComplexNumber)_complexNumberStack.Pop(); // 符号右边数
                ComplexNumber c2 = null; // 符号左边数
                if (_operators.IsTwoNumOperator(topOp))
                {
                  c2 = (ComplexNumber)_complexNumberStack.Pop();
                }
                ComplexNumber c3 = _operators.Compute(topOp, c2, c1);
                _complexNumberStack.Push(c3);
              }
              _operatorStack.Push(op);
            }
            else
            {
              _operatorStack.Push(op);
            }
          }
        }
        else if (obj is ComplexNumber)
        {
          complexNumber = (ComplexNumber)obj;
          _complexNumberStack.Push(complexNumber);
        }

        if (queue.Count == 0)
        {
          while (_operatorStack.Count != 0)
          {
            topOp = (char)_operatorStack.Pop();
            ComplexNumber c1 = (ComplexNumber)_complexNumberStack.Pop(); // 符号右边数
            ComplexNumber c2 = null; // 符号左边数
            if (_operators.IsTwoNumOperator(topOp))
            {
              c2 = (ComplexNumber)_complexNumberStack.Pop();
            }
            ComplexNumber c3 = _operators.Compute(topOp, c2, c1);
            _complexNumberStack.Push(c3);
          }
        }
      }

      return (ComplexNumber)_complexNumberStack.Pop();
    }
  }

  // 3+4i解析成Queue包含 3, +, 4i
  public class Parser
  {
    private Operators _operators = new Operators();

    public Queue<object> Parse(string input)
    {
      input = input.Replace(" ", "");
      if (input.StartsWith("-")) input = '0' + input;

      char[] arr = input.ToCharArray();
      Queue<char> queueChar = new Queue<char>();
      foreach (char x in arr)
      {
        queueChar.Enqueue(x);
      }
      Queue<object> queueResult = ParseStringQueue(queueChar);
      return queueResult;
    }

    // 传入字符串队列,返回封装好的队列。
    // ComplexNumber对象或char类型运算符各占用一个结点
    private Queue<object> ParseStringQueue(Queue<char> queue)
    {
      Queue<object> secondQ = new Queue<object>();
      char c;
      StringBuilder sb = null;
      string temp;
      int count = queue.Count;
      bool flag = false; // false表示允许创建新SB对象进行缓存数字字符串
      for (int i = 0; i < count; i++)
      {
        c = queue.Dequeue();
        if (!_operators.Contains(c))
        {
          // 如果扫描到的不是运算符,则将其加入到buffer尾部
          if (!flag)
          {
            flag = true;
            sb = new StringBuilder();
          }
          sb.Append(c);
        }
        if (_operators.Contains(c) || queue.Count == 0)
        {
          // 如果扫描到的是运算符,则将缓冲区中的串加入队尾
          if (sb != null && flag == true)
          {
            temp = sb.ToString();
            try
            {
              if (temp.EndsWith("i"))
              {
                if (temp.Length == 1)
                {
                  secondQ.Enqueue(new ComplexNumber(0, 1));
                }
                else
                {
                  // i前有数字则开出数字部分。
                  temp = temp.Substring(0, temp.Length - 1);
                  secondQ.Enqueue(new ComplexNumber(0, double.Parse(temp)));
                }
              }
              else
              {
                secondQ.Enqueue(new ComplexNumber(double.Parse(temp), 0));
              }
              sb = null;
              flag = false;
            }
            catch (Exception e)
            {
              UnityEngine.Debug.Log("Error " + e.ToString());
            }
          }
          // 如果是运算符,则最后将运算符放入队。
          if (_operators.Contains(c))
          {
            secondQ.Enqueue(c);
          }
        }
      }

      return secondQ;
    }
  }

  // 复数类,提供实数域虚数域,getset方法,加减乘除以及toString()方法
  class ComplexNumber
  {
    private double _realPart; // 实数部分
    private double _imaginPart; // 虚数部分

    public ComplexNumber()
    {
      _realPart = 0.0;
      _imaginPart = 0.0;
    }
    public ComplexNumber(double r, double i)
    {
      _realPart = r;
      _imaginPart = i;
    }
    public ComplexNumber(ComplexNumber c)
    {
      _realPart = c.GetRealPart();
      _imaginPart = c.GetImaginaryPart();
    }

    // get,set方法
    public double GetRealPart()
    {
      return _realPart;
    }
    public double GetImaginaryPart()
    {
      return _imaginPart;
    }
    public void SetRealPart(double d)
    {
      _realPart = d;
    }
    public void SetImaginaryPart(double d)
    {
      _imaginPart = d;
    }

    // 加
    public ComplexNumber ComplexAdd(ComplexNumber c)
    {
      return new ComplexNumber(_realPart + c.GetRealPart(), _imaginPart + c.GetImaginaryPart());
    }
    public ComplexNumber ComplexAdd(double c)
    {
      return new ComplexNumber(_realPart + c, _imaginPart);
    }
    // 减
    public ComplexNumber ComplexMinus(ComplexNumber c)
    {
      return new ComplexNumber(_realPart - c.GetRealPart(), _imaginPart - c.GetImaginaryPart());
    }
    public ComplexNumber ComplexMinus(double c)
    {
      return new ComplexNumber(_realPart - c, _imaginPart);
    }
    // 乘
    public ComplexNumber ComplexMulti(ComplexNumber c)
    {
      return new ComplexNumber(
      _realPart * c.GetRealPart()
      - _imaginPart * c.GetImaginaryPart(),
      _realPart *
      c.GetImaginaryPart()
      + _imaginPart *
      c.GetRealPart());
    }
    public ComplexNumber ComplexMulti(double c)
    {
      return new ComplexNumber(_realPart * c, _imaginPart * c);
    }
    // 除
    public ComplexNumber ComplexDivision(ComplexNumber c)
    {
      return new ComplexNumber((_realPart * c.GetRealPart() + _imaginPart * c.GetImaginaryPart())
        / (c.GetRealPart() * c.GetRealPart() + c.GetImaginaryPart() * c.GetImaginaryPart())
        , (_imaginPart * c.GetRealPart() - _realPart * c.GetImaginaryPart())
        / (c.GetRealPart() * c.GetRealPart() + c.GetImaginaryPart() * c.GetImaginaryPart()));
    }
    public ComplexNumber ComplexDivision(double c)
    {
      return new ComplexNumber(_realPart / c, _imaginPart / c);
    }
    // 幂
    public ComplexNumber ComplexPow(ComplexNumber c)
    {
      int pow;
      if (int.TryParse(c.GetRealPart().ToString(), out pow))
      {
        ComplexNumber origin = new ComplexNumber(this);
        ComplexNumber multi = new ComplexNumber(this);
        for (int i = 0; i < pow - 1; i++)
        {
          origin = origin.ComplexMulti(multi);
        }
        return origin;
      }
      else
      {
        return ComplexPow(c.GetRealPart());
      }
    }
    public ComplexNumber ComplexPow(double c)
    {
      return new ComplexNumber(Math.Pow(_realPart, c), 0.0);
    }
    // 最小值
    public ComplexNumber ComplexMinimum(ComplexNumber c)
    {
      if (_realPart <= c.GetRealPart()) return this;
      return c;
    }
    // 最大值
    public ComplexNumber ComplexMaximum(ComplexNumber c)
    {
      if (_realPart >= c.GetRealPart()) return this;
      return c;
    }
    // 转int
    public ComplexNumber ToFloorInt()
    {
      _realPart = Math.Floor(_realPart);
      return this;
    }

    public override string ToString()
    {
      return "(" + _realPart + " + " + _imaginPart + " i" + ")";
    }
  }

  // 操作符类
  class Operators
  {
    private char[][] _signOperator;

    public Operators()
    {
      // 从上到下,优先级由高到低
      _signOperator = new char[4][];
      _signOperator[0] = new char[4];
      _signOperator[0][0] = '^';
      _signOperator[0][1] = 's'; // 最小值
      _signOperator[0][2] = 'b'; // 最大值
      _signOperator[0][3] = 'i'; // int值
      _signOperator[1] = new char[2];
      _signOperator[1][0] = '*';
      _signOperator[1][1] = '/';
      _signOperator[2] = new char[2];
      _signOperator[2][0] = '+';
      _signOperator[2][1] = '-';
      _signOperator[3] = new char[2];
      _signOperator[3][0] = '(';
      _signOperator[3][1] = ')';
    }

    // 比较操作符优先级
    public int ComparePriority(char firstSign, char secondSign)
    {
      int priorityF = 0, priorityS = 0;
      for (int i = 0; i < _signOperator.Length; i++)
      {
        foreach (char x in _signOperator[i])
        {
          if (firstSign == x)
          {
            priorityF = i;
          }
          if (secondSign == x)
          {
            priorityS = i;
          }
        }
      }

      return (priorityF - priorityS);
    }

    // 是否是需要两个参数的操作符
    public bool IsTwoNumOperator(char op)
    {
      if (op == 'i') return false;
      return true;
    }

    public bool Contains(char x)
    {
      if (x == '(' || x == ')')
      {
        UnityEngine.Debug.LogError(x + "为中文字符,请改为英文字符");
      }

      foreach (char[] arr in _signOperator)
      {
        foreach (char y in arr)
        {
          if (x == y)
          {
            return true;
          }
        }
      }
      return false;
    }

    public ComplexNumber Compute(char op, ComplexNumber c1, ComplexNumber c2)
    {
      ComplexNumber result = null;
      switch (op)
      {
        case '+': result = c1.ComplexAdd(c2); break;
        case '-': result = c1.ComplexMinus(c2); break;
        case '*': result = c1.ComplexMulti(c2); break;
        case '/': result = c1.ComplexDivision(c2); break;
        case '^': result = c1.ComplexPow(c2); break;
        case 's': result = c1.ComplexMinimum(c2); break;
        case 'b': result = c1.ComplexMaximum(c2); break;
        case 'i': result = c2.ToFloorInt(); break;
      }
      return result;
    }
  }
}

上述就是小编为大家分享的怎么在C#中利用栈实现加减乘除运算了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注亿速云行业资讯频道。

推荐阅读:
  1. 大数运算实现加减乘除四则运算
  2. MongoDB中怎么实现加减乘除运算

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

上一篇:如何在Android中通过自定义View实现一个五子棋游戏

下一篇:使用JavaScript怎么实现一个动态星空背景效果

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》