C++使用Kruskal和Prim算法实现最小生成树的方法

发布时间:2020-07-30 13:57:14 作者:小猪
来源:亿速云 阅读:431

这篇文章主要讲解了C++使用Kruskal和Prim算法实现最小生成树的方法,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。

很久以前就学过最小生成树之Kruskal和Prim算法,这两个算法很容易理解,但实现起来并不那么容易。最近学习了并查集算法,得知并查集可以用于实现上述两个算法后,我自己动手实现了最小生成树算法。

宏观上讲,Kruskal算法就是一个合并的过程,而Prim算法是一个吞并的过程,另外在Prim算法中还用到了一种数据结构——优先级队列,用于动态排序。由于这两个算法很容易理解,在此不再赘述。接下来给出我的源代码。

输入

第一行包含两个整数n和m,n表示图中结点个数,m表示图中边的条数;接下来m行,每一行包含三个整数u,v,w,表示途中存在一条边(u,v),并且其权重为w;为了便于调试,我的程序是从文件中输入数据的;

输出

输出程序选择的最小生成树的权值之和以及每一条边信息;

Kruskal算法:

#include <iostream>
#include <vector>
#include <algorithm>
#include <fstream>
using namespace std;
 
struct Edge
{
 int u; //边连接的一个顶点编号
 int v; //边连接另一个顶点编号
 int w; //边的权值
 friend bool operator<(const Edge& E1, const Edge& E2)
 {
 return E1.w < E2.w;
 }
};
//创建并查集
void MakeSet(vector<int>& uset, int n)
{
 uset.assign(n, 0);
 for (int i = 0; i < n; i++)
 uset[i] = i;
}
//查找当前元素所在集合的代表元
int FindSet(vector<int>& uset, int u)
{
 int i = u;
 while (uset[i] != i) i = uset[i];
 return i;
}
void Kruskal(const vector<Edge>& edges, int n)
{
 vector<int> uset;
 vector<Edge> SpanTree;
 int Cost = 0, e1, e2;
 MakeSet(uset, n);
 for (int i = 0; i < edges.size(); i++) //按权值从小到大的顺序取边
 {
 e1 = FindSet(uset, edges[i].u);
 e2 = FindSet(uset, edges[i].v);
 if (e1 != e2) //若当前边连接的两个结点在不同集合中,选取该边并合并这两个集合
 {
 SpanTree.push_back(edges[i]);
 Cost += edges[i].w;
 uset[e1] = e2; //合并当前边连接的两个顶点所在集合
 }
 }
 cout << "Result:\n";
 cout << "Cost: " << Cost << endl;
 cout << "Edges:\n";
 for (int j = 0; j < SpanTree.size(); j++)
 cout << SpanTree[j].u << " " << SpanTree[j].v << " " << SpanTree[j].w << endl;
 cout << endl;
}
int main()
{
 ifstream in("data.txt");
 
 int n, m;
 in >> n >> m;
 vector<Edge> edges;
 edges.assign(m, Edge());
 for (int i = 0; i < m; i++)
 in >> edges[i].u >> edges[i].v >> edges[i].w;
 sort(edges.begin(), edges.end()); //排序之后,可以以边权值从小到大的顺序选取边
 Kruskal(edges, n);
 
 in.close();
 
 system("pause");
 return 0;
}

Prim算法:

#include <iostream>
#include <fstream>
#include <vector>
#include <list>
#include <queue>
using namespace std;
struct Node
{
 int v;
 int w;
 Node(int a, int b) :v(a), w(b){}
};
struct Edge
{
 int u;
 int v;
 int w;
 Edge(int a, int b, int c) :u(a), v(b), w(c){}
 friend bool operator<(const Edge& E1, const Edge& E2)
 {
 return E1.w>E2.w;
 }
};
int n, m;
vector<list<Node>> Adj;
priority_queue<Edge> Q;
 
int FindSet(vector<int>& uset, int v)
{
 int i = v;
 while (i != uset[i]) i = uset[i];
 return i;
}
 
void Prim()
{
 int Cost = 0; //用于统计最小生成树的权值之和
 vector<Edge> SpanTree; //用于保存最小生成树的边
 vector<int> uset(n,0); //用数组来实现并查集
 Edge E(0, 0, 0);
 for (int i = 0; i < n; i++) uset[i] = i; //并查集初始化
 for (auto it = Adj[0].begin(); it != Adj[0].end(); it++) 
 Q.push(Edge(0, it->v, it->w)); //根据Prim算法,开始时选取结点0,并将结点0与剩余部分的边保存在优先队列中
 //循环中每次选取优先队列中权值最小的边,并更新优先队列
 while (!Q.empty())
 {
 E = Q.top();
 Q.pop();
 if (0 != FindSet(uset, E.v))
 {
 Cost += E.w;
 SpanTree.push_back(E);
 uset[E.v] = E.u;
 for (auto it = Adj[E.v].begin(); it != Adj[E.v].end(); it++)
 if (0 != FindSet(uset, it->v)) Q.push(Edge(E.v, it->v, it->w));
 }
 }
 cout << "Result:\n";
 cout << "Cost: " << Cost << endl;
 cout << "Edges:\n";
 for (int j = 0; j < SpanTree.size(); j++)
 cout << SpanTree[j].u << " " << SpanTree[j].v << " " << SpanTree[j].w << endl;
 cout << endl;
}
int main()
{
 ifstream in("data.txt");
 
 int u, v, w;
 in >> n >> m;
 Adj.assign(n, list<Node>());
 for (int i = 0; i < m; i++)
 {
 in >> u >> v >> w;
 Adj[u].push_back(Node(v,w));
 Adj[v].push_back(Node(u,w));
 }
 Prim();
 
 in.close();
 
 system("pause");
 return 0;
}

就实现而言,Kruskal算法比Prim算法更容易,代码更易于理解。

看完上述内容,是不是对C++使用Kruskal和Prim算法实现最小生成树的方法有进一步的了解,如果还想学习更多内容,欢迎关注亿速云行业资讯频道。

推荐阅读:
  1. 最小生成树---Kruskal算法
  2. 算法和算法实现

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

c++ kruskal prim

上一篇:如何实现微信小程序个人中心的列表控件

下一篇:AD管理员必备技能(二)离线角色转移

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》