您好,登录后才能下订单哦!
小编给大家分享一下MATLAB中Delaunay算法如何提取离散点边界,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
关于离散点边界提取的三种方法:
1.Convhull 离散点集获得边界
2.Alpha Shape算法检测边缘点
3.Delaunay 三角剖分算法
前两种方法在之前的博客中已经做了总结这里就不展开了,现在主要介绍第三种算法。
该算法的总体思路如下:
1、利用 delaunay 函数,对所有数据点进行 Delaunay 三角剖分处理,delaunay 函数的返回值是一个 N * 3 的矩阵,其中 N 为剖分出的三角形个数,3 为每个三角形的三个端点的序号。
2、根据 triangles 矩阵,提取出所有 delaunay 三角剖分时所连接的边,依次扫描 triangles 矩阵的每一行,将 delaunay 三角剖分时所连接的边添加到一个新的矩阵中,最后构成一个 M * 2 的矩阵,其中 M 是一共所连接的边的条数。
3、显然,最小凸多边形上的边应该仅在以上矩阵中出现一次,因此,将以上矩阵中那些出现次数超过一次的边全部去掉,最后保留的便是最小凸多边形的边。
4、根据最小凸多边形的边,很容易得到构成最小凸多边形的结点的顺序,从而解决问题。
输入参数 points 是一个 2 * P 矩阵, P 为数据点的个数,第一行是这些数据点对应的 x 坐标,第二行是对应的 y 坐标;输出参数 polygon 是一个 2 * Q 矩阵, Q 为凸多边形的顶点个数(首尾相连),第一行是这些顶点对应的 x 坐标,第二行是对应的 y 坐标。代码实现如下:
function polygon = minimal_convex_polygon(points) % 进行 delaunay 三角剖分,将所有连接了的边保存在矩阵 lines 中 triangles = sort(delaunay(points(1, :), points(2, :)), 2); lines = zeros(size(triangles, 1) * 3, 2); for i = 1:size(triangles, 1) lines(3 * i - 2,:) = [triangles(i, 1), triangles(i, 2)]; lines(3 * i - 1,:) = [triangles(i, 1), triangles(i, 3)]; lines(3 * i,:) = [triangles(i, 2), triangles(i, 3)]; end % 去掉 lines 中出现次数超过一次的边 [~, IA] = unique(lines, 'rows'); lines = setdiff(lines(IA, :), lines(setdiff(1:size(lines, 1), IA), :), 'rows'); % 跟踪 lines 中的数据点,将凸多边形的顶点编号保存在 seqs 中 seqs = zeros(size(lines, 1) + 1,1); seqs(1:2) = lines(1, :); lines(1, :) = []; for i = 3:size(seqs) pos = find(lines == seqs(i - 1)); row = rem(pos - 1, size(lines, 1)) + 1; col = ceil(pos / size(lines, 1)); seqs(i) = lines(row, 3 - col); lines(row, :) = []; end % 根据 seqs , 得到凸多边形顶点坐标 polygon = points(:, seqs); end
定义了实现函数,下面进行调用:
plot(Pp(1,:),Pp(2,:), '*r', 'LineWidth', 4); % Pp第一行为x坐标,第二行为y坐标 polygon = minimal_convex_polygon(Pp); hold on; plot(polygon(1, :), polygon(2, :), 'LineWidth', 2);
以上是“MATLAB中Delaunay算法如何提取离散点边界”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。