您好,登录后才能下订单哦!
密码登录
登录注册
点击 登录注册 即表示同意《亿速云用户服务条款》
这篇文章主要讲解了unity如何实现贴图矩阵运算,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。
我们在shader中对贴图处理时,有时候会有一些比较复杂的运算,比方说三角函数,开方等,一般情况下,如果可以在越上层做运算,性能会越高。C# > Vertex > fragment
因此,考虑到贴图的旋转用到的三角函数,可以使用在C#中传入旋转矩阵得到,然后使用uv直接乘以矩阵就可以了。
封装了vmatrix4x4,分享一下:
using UnityEngine; namespace D11.Skin { public class VMatrix { public float[,] m; public VMatrix() { m = new float[4, 4]; m[0, 0] = 0.0f; m[0, 1] = 0.0f; m[0, 2] = 0.0f; m[0, 3] = 0.0f; m[1, 0] = 0.0f; m[1, 1] = 0.0f; m[1, 2] = 0.0f; m[1, 3] = 0.0f; m[2, 0] = 0.0f; m[2, 1] = 0.0f; m[2, 2] = 0.0f; m[2, 3] = 0.0f; m[3, 0] = 0.0f; m[3, 1] = 0.0f; m[3, 2] = 0.0f; m[3, 3] = 0.0f; } public static void MatrixSetIdentity(VMatrix matrix) { matrix.m[0,0] = 1.0f; matrix.m[0,1] = 0.0f; matrix.m[0,2] = 0.0f; matrix.m[0,3] = 0.0f; matrix.m[1,0] = 0.0f; matrix.m[1,1] = 1.0f; matrix.m[1,2] = 0.0f; matrix.m[1,3] = 0.0f; matrix.m[2,0] = 0.0f; matrix.m[2,1] = 0.0f; matrix.m[2,2] = 1.0f; matrix.m[2,3] = 0.0f; matrix.m[3,0] = 0.0f; matrix.m[3,1] = 0.0f; matrix.m[3,2] = 0.0f; matrix.m[3,3] = 1.0f; } public static void MatrixBuildTranslation(VMatrix matrix, float x, float y, float z) { MatrixSetIdentity(matrix); matrix.m[0,3] = x; matrix.m[1,3] = y; matrix.m[2,3] = z; } public static void MatrixBuildTranslation(VMatrix matrix, Vector3 vec) { MatrixSetIdentity(matrix); matrix.m[0, 3] = vec.x; matrix.m[1, 3] = vec.y; matrix.m[2, 3] = vec.z; } public static void MatrixBuildScale(VMatrix matrix, float x, float y, float z) { matrix.m[0, 0] = x; matrix.m[0, 1] = 0.0f; matrix.m[0, 2] = 0.0f; matrix.m[0, 3] = 0.0f; matrix.m[1, 0] = 0.0f; matrix.m[1, 1] = y; matrix.m[1, 2] = 0.0f; matrix.m[1, 3] = 0.0f; matrix.m[2, 0] = 0.0f; matrix.m[2, 1] = 0.0f; matrix.m[2, 2] = z; matrix.m[2, 3] = 0.0f; matrix.m[3, 0] = 0.0f; matrix.m[3, 1] = 0.0f; matrix.m[3, 2] = 0.0f; matrix.m[3, 3] = 1.0f; } public static void MatrixBuildScale(VMatrix matrix, Vector3 scale) { MatrixBuildScale(matrix, scale.x, scale.y, scale.z); } public static void MatrixBuildRotate(VMatrix matrix, float angleDegrees) { float radians = angleDegrees * (Mathf.PI / 180.0f); float fSin = Mathf.Sin(radians); float fCos = Mathf.Cos(radians); matrix.m[0, 0] = fCos; matrix.m[0, 1] = -fSin; matrix.m[0, 2] = 0.0f; matrix.m[0, 3] = 0.0f; matrix.m[1, 0] = fSin; matrix.m[1, 1] = fCos; matrix.m[1, 2] = 0.0f; matrix.m[1, 3] = 0.0f; matrix.m[2, 0] = 0.0f; matrix.m[2, 1] = 0.0f; matrix.m[2, 2] = 1.0f; matrix.m[2, 3] = 0.0f; matrix.m[3, 0] = 0.0f; matrix.m[3, 1] = 0.0f; matrix.m[3, 2] = 0.0f; matrix.m[3, 3] = 1.0f; } public static VMatrix MatrixMultiply(VMatrix src1, VMatrix src2) { VMatrix dst = new VMatrix(); dst.m[0,0] = src1.m[0,0] * src2.m[0,0] + src1.m[0,1] * src2.m[1,0] + src1.m[0,2] * src2.m[2,0] + src1.m[0,3] * src2.m[3,0]; dst.m[0,1] = src1.m[0,0] * src2.m[0,1] + src1.m[0,1] * src2.m[1,1] + src1.m[0,2] * src2.m[2,1] + src1.m[0,3] * src2.m[3,1]; dst.m[0,2] = src1.m[0,0] * src2.m[0,2] + src1.m[0,1] * src2.m[1,2] + src1.m[0,2] * src2.m[2,2] + src1.m[0,3] * src2.m[3,2]; dst.m[0,3] = src1.m[0,0] * src2.m[0,3] + src1.m[0,1] * src2.m[1,3] + src1.m[0,2] * src2.m[2,3] + src1.m[0,3] * src2.m[3,3]; dst.m[1,0] = src1.m[1,0] * src2.m[0,0] + src1.m[1,1] * src2.m[1,0] + src1.m[1,2] * src2.m[2,0] + src1.m[1,3] * src2.m[3,0]; dst.m[1,1] = src1.m[1,0] * src2.m[0,1] + src1.m[1,1] * src2.m[1,1] + src1.m[1,2] * src2.m[2,1] + src1.m[1,3] * src2.m[3,1]; dst.m[1,2] = src1.m[1,0] * src2.m[0,2] + src1.m[1,1] * src2.m[1,2] + src1.m[1,2] * src2.m[2,2] + src1.m[1,3] * src2.m[3,2]; dst.m[1,3] = src1.m[1,0] * src2.m[0,3] + src1.m[1,1] * src2.m[1,3] + src1.m[1,2] * src2.m[2,3] + src1.m[1,3] * src2.m[3,3]; dst.m[2,0] = src1.m[2,0] * src2.m[0,0] + src1.m[2,1] * src2.m[1,0] + src1.m[2,2] * src2.m[2,0] + src1.m[2,3] * src2.m[3,0]; dst.m[2,1] = src1.m[2,0] * src2.m[0,1] + src1.m[2,1] * src2.m[1,1] + src1.m[2,2] * src2.m[2,1] + src1.m[2,3] * src2.m[3,1]; dst.m[2,2] = src1.m[2,0] * src2.m[0,2] + src1.m[2,1] * src2.m[1,2] + src1.m[2,2] * src2.m[2,2] + src1.m[2,3] * src2.m[3,2]; dst.m[2,3] = src1.m[2,0] * src2.m[0,3] + src1.m[2,1] * src2.m[1,3] + src1.m[2,2] * src2.m[2,3] + src1.m[2,3] * src2.m[3,3]; dst.m[3,0] = src1.m[3,0] * src2.m[0,0] + src1.m[3,1] * src2.m[1,0] + src1.m[3,2] * src2.m[2,0] + src1.m[3,3] * src2.m[3,0]; dst.m[3,1] = src1.m[3,0] * src2.m[0,1] + src1.m[3,1] * src2.m[1,1] + src1.m[3,2] * src2.m[2,1] + src1.m[3,3] * src2.m[3,1]; dst.m[3,2] = src1.m[3,0] * src2.m[0,2] + src1.m[3,1] * src2.m[1,2] + src1.m[3,2] * src2.m[2,2] + src1.m[3,3] * src2.m[3,2]; dst.m[3,3] = src1.m[3,0] * src2.m[0,3] + src1.m[3,1] * src2.m[1,3] + src1.m[3,2] * src2.m[2,3] + src1.m[3,3] * src2.m[3,3]; return dst; } public Vector4 MatrixGetCol(int nCol) { System.Diagnostics.Debug.Assert((nCol >= 0) && (nCol <= 3)); Vector4 vec; vec.x = m[0,nCol]; vec.y = m[1,nCol]; vec.z = m[2,nCol]; vec.w = m[3,nCol]; return vec; } public Vector4 MatrixGetRow(int nRow) { System.Diagnostics.Debug.Assert((nRow >= 0) && (nRow <= 3)); Vector4 vec; vec.x = m[nRow, 0]; vec.y = m[nRow, 1]; vec.z = m[nRow, 2]; vec.w = m[nRow, 3]; return vec; } public static VMatrix GetSRTMatrix(Vector2 scale, float rotation, Vector2 center, Vector2 translation) { VMatrix mat = new VMatrix(); VMatrix temp = new VMatrix(); MatrixBuildScale(mat, scale.x, scale.y, 1.0f); MatrixBuildTranslation(temp, -center); mat = MatrixMultiply(temp, mat); MatrixBuildRotate(temp, rotation); mat = MatrixMultiply(temp, mat); MatrixBuildTranslation(temp, center.x + translation.x, center.y - translation.y, 0.0f); mat = MatrixMultiply(temp, mat); return mat; } } }
调用方式:
VMatrix matrix = VMatrix.GetSRTMatrix(scale, -m_cur_rotate, center, translation + translationExtra); m_CRTTexture.material.SetVector("_SRT0", matrix.MatrixGetRow(0)); m_CRTTexture.material.SetVector("_SRT1", matrix.MatrixGetRow(1));
shader使用:
Properties { _SRT0("PatternSRT0", Vector) = (1, 1, 1, 1) _SRT1("PatternSRT1", Vector) = (1, 1, 1, 1) } Pass { float4 _SRT0; float4 _SRT1; float4 get_pattern_color(float2 uv) { float2 uv2; uv2.x = dot(uv, _SRT0.xy) + _SRT0.w; uv2.y = dot(uv, _SRT1.xy) + _SRT1.w; return tex2D(_PatternTexture, uv2); } }
感兴趣的可以自己试一试
看完上述内容,是不是对unity如何实现贴图矩阵运算有进一步的了解,如果还想学习更多内容,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。