PostgreSQL中grouping_planner函数有什么作用

发布时间:2021-11-10 15:55:59 作者:iii
来源:亿速云 阅读:154

这篇文章主要介绍“PostgreSQL中grouping_planner函数有什么作用”,在日常操作中,相信很多人在PostgreSQL中grouping_planner函数有什么作用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”PostgreSQL中grouping_planner函数有什么作用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

源码解读

分组/聚集等操作是在一个Relation上叠加分组/聚集运算,grouping_planner函数首先通过query_planner函数生成一个新的关系,然后在此关系上attached分组/聚集等操作。

/*--------------------
 * grouping_planner
 *    Perform planning steps related to grouping, aggregation, etc.
 *    执行与与分组/聚集相关的"规划步骤".
 *    分组/聚集等操作是在一个Relation上叠加分组/聚集运算,
 *    PG首先通过query_planner函数生成一个新的关系,然后在此关系上attached分组/聚集等操作
 *
 * This function adds all required top-level processing to the scan/join
 * Path(s) produced by query_planner.
 *
 * 该函数还处理了所有需要在顶层处理的扫描/连接路径(通过query_planner函数生成)
 *
 * If inheritance_update is true, we're being called from inheritance_planner
 * and should not include a ModifyTable step in the resulting Path(s).
 * (inheritance_planner will create a single ModifyTable node covering all the
 * target tables.)
 *
 * 如果标志inheritance_update为true,这个函数的调用者是inheritance_planner,在结果路径中
 * 不应包含ModifyTable步骤(inheritance_planner会创建一个单独的覆盖所有目标表的ModifyTable节点).
 *
 * tuple_fraction is the fraction of tuples we expect will be retrieved.
 * tuple_fraction is interpreted as follows:
 *    0: expect all tuples to be retrieved (normal case)
 *    0 < tuple_fraction < 1: expect the given fraction of tuples available
 *      from the plan to be retrieved
 *    tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
 *      expected to be retrieved (ie, a LIMIT specification)
 *
 * tuple_fraction是我们希望搜索的元组比例:
 * 0:正常情况下,期望扫描所有的元组
 * 大于0小于1:按给定的比例扫描
 * 大于等于1:扫描的元组数量(比如通过LIMIT语句指定)
 *
 * Returns nothing; the useful output is in the Paths we attach to the
 * (UPPERREL_FINAL, NULL) upperrel in *root.  In addition,
 * root->processed_tlist contains the final processed targetlist.
 *
 * 该函数没有返回值,有用的输出是root->upperrel->Paths,另外,root->processed_tlist中存储最终的投影列
 *
 * Note that we have not done set_cheapest() on the final rel; it's convenient
 * to leave this to the caller.
 *--------------------
 */
static void
grouping_planner(PlannerInfo *root, bool inheritance_update,
                 double tuple_fraction)
{
    Query      *parse = root->parse;
    List       *tlist;
    int64       offset_est = 0;
    int64       count_est = 0;
    double      limit_tuples = -1.0;
    bool        have_postponed_srfs = false;
    PathTarget *final_target;
    List       *final_targets;
    List       *final_targets_contain_srfs;
    bool        final_target_parallel_safe;
    RelOptInfo *current_rel;
    RelOptInfo *final_rel;
    ListCell   *lc;

    /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
    //如果存在LIMIT/OFFSET子句,调整tuple_fraction
    if (parse->limitCount || parse->limitOffset)//存在LIMIT/OFFSET语句
    {
        tuple_fraction = preprocess_limit(root, tuple_fraction,
                                          &offset_est, &count_est);//获取元组数量

        /*
         * If we have a known LIMIT, and don't have an unknown OFFSET, we can
         * estimate the effects of using a bounded sort.
         * 如果我们有一个已知LIMIT,并且没有未知的OFFSET,我们可以估算使用有界排序的效果。
         */
        if (count_est > 0 && offset_est >= 0)
            limit_tuples = (double) count_est + (double) offset_est;//
    }

    /* Make tuple_fraction accessible to lower-level routines */
    //使tuple_fraction可被低级别的处理过程访问(在优化器信息中设置)
    root->tuple_fraction = tuple_fraction;//设置值

    if (parse->setOperations)//集合操作,如UNION等
    {
        /*
         * If there's a top-level ORDER BY, assume we have to fetch all the
         * tuples.  This might be too simplistic given all the hackery below
         * to possibly avoid the sort; but the odds of accurate estimates here
         * are pretty low anyway.  XXX try to get rid of this in favor of
         * letting plan_set_operations generate both fast-start and
         * cheapest-total paths.
         * 如果语句的最外层(顶级)存在ORDER BY子句,假设我们必须获取所有元组。
         * 这可能过于简单,但无论如何,准确估计的几率是相当低的。
         * XXX试图摆脱这种情况,让plan_set_operations同时生成快速启动和最便宜的路径。
         */
        if (parse->sortClause)
            root->tuple_fraction = 0.0;//存在排序操作,需扫描所有的元组

        /*
         * Construct Paths for set operations.  The results will not need any
         * work except perhaps a top-level sort and/or LIMIT.  Note that any
         * special work for recursive unions is the responsibility of
         * plan_set_operations.
         * 为集合操作构造路径。
         * 除了最外层的SORT/LIMIT操作外不需要作其他操作。
注意,递归联合的任何特殊工作都是plan_set_operations负责。
         */
        current_rel = plan_set_operations(root);//调用集合操作的"规划"函数

        /*
         * We should not need to call preprocess_targetlist, since we must be
         * in a SELECT query node.  Instead, use the targetlist returned by
         * plan_set_operations (since this tells whether it returned any
         * resjunk columns!), and transfer any sort key information from the
         * original tlist.
         * 我们不需要调用preprocess_targetlist函数,因为执行这些操作必须在SELECT查询NODE中。
         * 相反,使用plan_set_operations函数返回的targetlist(因为这告诉它是否返回了所有的resjunk列),
         * 并从原始投影列链表tlist中传输所有的排序sort键信息。
         */
        Assert(parse->commandType == CMD_SELECT);

        tlist = root->processed_tlist;  /* 从plan_set_operations函数的返回结果中获取;from plan_set_operations */

        /* for safety, copy processed_tlist instead of modifying in-place */
        //为了安全起见,复制processed_tlist,而不是就地修改
        tlist = postprocess_setop_tlist(copyObject(tlist), parse->targetList);

        /* Save aside the final decorated tlist */
        //
        root->processed_tlist = tlist;

        /* Also extract the PathTarget form of the setop result tlist */
        //从集合操作结果投影列中获取PathTarget格式的结果列
        final_target = current_rel->cheapest_total_path->pathtarget;

        /* And check whether it's parallel safe */
        //检查是否并行安全
        final_target_parallel_safe =
            is_parallel_safe(root, (Node *) final_target->exprs);

        /* The setop result tlist couldn't contain any SRFs */
        //集合操作结果投影列不能包含任何的SRFs
        Assert(!parse->hasTargetSRFs);
        final_targets = final_targets_contain_srfs = NIL;

        /*
         * Can't handle FOR [KEY] UPDATE/SHARE here (parser should have
         * checked already, but let's make sure).
         * 无法在这里处理[KEY]更新/共享(解析器应该已经检查过了,但需要确认)。
         */
        if (parse->rowMarks)
            ereport(ERROR,
                    (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
            /*------
              translator: %s is a SQL row locking clause such as FOR UPDATE */
                     errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT",
                            LCS_asString(linitial_node(RowMarkClause,
                                                       parse->rowMarks)->strength))));

        /*
         * Calculate pathkeys that represent result ordering requirements
         * 计算表示结果排序需求的pathkeys
         */
        Assert(parse->distinctClause == NIL);
        root->sort_pathkeys = make_pathkeys_for_sortclauses(root,
                                                            parse->sortClause,
                                                            tlist);
    }
    else//非集合操作
    {
        /* No set operations, do regular planning */
        //没有集合操作,执行常规的规划过程
        PathTarget *sort_input_target;
        List       *sort_input_targets;
        List       *sort_input_targets_contain_srfs;
        bool        sort_input_target_parallel_safe;
        PathTarget *grouping_target;
        List       *grouping_targets;
        List       *grouping_targets_contain_srfs;
        bool        grouping_target_parallel_safe;
        PathTarget *scanjoin_target;
        List       *scanjoin_targets;
        List       *scanjoin_targets_contain_srfs;
        bool        scanjoin_target_parallel_safe;
        bool        scanjoin_target_same_exprs;
        bool        have_grouping;
        AggClauseCosts agg_costs;
        WindowFuncLists *wflists = NULL;
        List       *activeWindows = NIL;
        grouping_sets_data *gset_data = NULL;
        standard_qp_extra qp_extra;

        /* A recursive query should always have setOperations */
        //递归查询应包含集合操作,检查!
        Assert(!root->hasRecursion);//检查

        /* Preprocess grouping sets and GROUP BY clause, if any */
        //预处理grouping sets语句和GROUP BY 子句
        if (parse->groupingSets)//
        {
            gset_data = preprocess_grouping_sets(root);//预处理grouping sets语句
        }
        else
        {
            /* Preprocess regular GROUP BY clause, if any */
            //如处理常规的GROUP BY 子句
            if (parse->groupClause)
                parse->groupClause = preprocess_groupclause(root, NIL);//处理普通的Group By语句
        }

        /* Preprocess targetlist */
        //预处理投影列
        tlist = preprocess_targetlist(root);//处理投影列

        /*
         * We are now done hacking up the query's targetlist.  Most of the
         * remaining planning work will be done with the PathTarget
         * representation of tlists, but save aside the full representation so
         * that we can transfer its decoration (resnames etc) to the topmost
         * tlist of the finished Plan.
         * 现在已经完成了对查询语句targetlist的hacking工作。
         * 剩下的大部分规划工作将使用tlists的PathTarget来完成,
         * 但是需要保留完整的信息,这样我们就可以将它的修饰信息(如resname等)转移到完成计划的最顶层tlist中。
         */
        root->processed_tlist = tlist;//赋值

        /*
         * Collect statistics about aggregates for estimating costs, and mark
         * all the aggregates with resolved aggtranstypes.  We must do this
         * before slicing and dicing the tlist into various pathtargets, else
         * some copies of the Aggref nodes might escape being marked with the
         * correct transtypes.
         * 收集关于聚集操作的统计数据以估计成本,并在所有聚集操作上标上已解决的aggtranstypes。
         * 必须在将tlist切割成各种PathKeys之前完成这项工作,
         * 否则一些Aggref节点的副本中正确transtypes可能会被替换。
         * 
         * Note: currently, we do not detect duplicate aggregates here.  This
         * may result in somewhat-overestimated cost, which is fine for our
         * purposes since all Paths will get charged the same.  But at some
         * point we might wish to do that detection in the planner, rather
         * than during executor startup.
         * 注意:目前,我们没有检测到重复的聚合。
         * 这可能会导致一些过高估算的成本,这对于我们的目的来说是好的,因为所有的Path都会耗费相同的成本。
         * 但在某些时候,可能希望在计划器中进行检测,而不是在执行器executor启动期间。
         */
        MemSet(&agg_costs, 0, sizeof(AggClauseCosts));
        if (parse->hasAggs)//存在聚合函数
        {
            get_agg_clause_costs(root, (Node *) tlist, AGGSPLIT_SIMPLE,
                                 &agg_costs);//收集用于估算成本的统计信息
            get_agg_clause_costs(root, parse->havingQual, AGGSPLIT_SIMPLE,
                                 &agg_costs);//收集用于估算成本的统计信息
        }

        /*
         * Locate any window functions in the tlist.  (We don't need to look
         * anywhere else, since expressions used in ORDER BY will be in there
         * too.)  Note that they could all have been eliminated by constant
         * folding, in which case we don't need to do any more work.
         * 在tlist中找到所有的窗口函数。
         * (我们不需要在其他地方查找,因为ORDER BY中使用的表达式也在那里。)
         * 注意,它们可以通过不断折叠来消除,在这种情况下,我们不需要做更多的工作。
         */
        if (parse->hasWindowFuncs)//窗口函数
        {
            wflists = find_window_functions((Node *) tlist,
                                            list_length(parse->windowClause));
            if (wflists->numWindowFuncs > 0)
                activeWindows = select_active_windows(root, wflists);
            else
                parse->hasWindowFuncs = false;
        }

        /*
         * Preprocess MIN/MAX aggregates, if any.  Note: be careful about
         * adding logic between here and the query_planner() call.  Anything
         * that is needed in MIN/MAX-optimizable cases will have to be
         * duplicated in planagg.c.
         * 重新处理MAX/MIN聚集操作,如果有的话。
         * 注意:在这里和query_planner()调用之间添加逻辑时要小心。
         * 在MIN/MAX优化情况下需要的所有东西都必须在plan .c中重复。
         */
        if (parse->hasAggs)//预处理最大最小聚合
            preprocess_minmax_aggregates(root, tlist);

        /*
         * Figure out whether there's a hard limit on the number of rows that
         * query_planner's result subplan needs to return.  Even if we know a
         * hard limit overall, it doesn't apply if the query has any
         * grouping/aggregation operations, or SRFs in the tlist.
         * 计算query_planner结果子计划需要返回的行数是否有硬性限制。
         * 即使我们知道总的强制限制,如果查询在tlist中有任何分组/聚合操作或SRFs,它也不适用。
         */
        if (parse->groupClause ||
            parse->groupingSets ||
            parse->distinctClause ||
            parse->hasAggs ||
            parse->hasWindowFuncs ||
            parse->hasTargetSRFs ||
            root->hasHavingQual)//存在Group By/Grouping Set等语句,则limit_tuples设置为-1
            root->limit_tuples = -1.0;
        else
            root->limit_tuples = limit_tuples;//否则,正常赋值

        /* Set up data needed by standard_qp_callback */
        //配置standard_qp_callback函数需要的相关数据
        qp_extra.tlist = tlist;//赋值
        qp_extra.activeWindows = activeWindows;
        qp_extra.groupClause = (gset_data
                                ? (gset_data->rollups ? linitial_node(RollupData, gset_data->rollups)->groupClause : NIL)
                                : parse->groupClause);

        /*
         * Generate the best unsorted and presorted paths for the scan/join
         * portion of this Query, ie the processing represented by the
         * FROM/WHERE clauses.  (Note there may not be any presorted paths.)
         * We also generate (in standard_qp_callback) pathkey representations
         * of the query's sort clause, distinct clause, etc.
         * 为这个查询的扫描/连接部分(即FROM/WHERE子句表示的处理)生成最好的未排序和预排序路径。
         * (注意,可能没有任何预先设置的路径。)
         * 我们还生成(在standard_qp_callback中)查询语句的sort子句和distinct子句对应的PathKey。
         */
         //为查询中的扫描/连接部分生成最优的未排序/预排序路径(如FROM/WHERE语句表示的处理过程)
        current_rel = query_planner(root, tlist,
                                    standard_qp_callback, &qp_extra);

        /*
         * Convert the query's result tlist into PathTarget format.
         * 转换查询结果为PathTarget格式
         *
         * Note: it's desirable to not do this till after query_planner(),
         * because the target width estimates can use per-Var width numbers
         * that were obtained within query_planner().
         * 注意:在query_planner()之后才需要这样做,因为目标列的宽度估算可以使用在query_planner()中获得的每个VAR信息。
         */
        final_target = create_pathtarget(root, tlist);
        final_target_parallel_safe =
            is_parallel_safe(root, (Node *) final_target->exprs);

        /*
         * If ORDER BY was given, consider whether we should use a post-sort
         * projection, and compute the adjusted target for preceding steps if
         * so.
         * 如果存在ORDER BY子句,考虑是否使用post-sort投影,如使用则计算前面已调整过的步骤目标列。
         */
        if (parse->sortClause)//存在sort语句?
        {
            sort_input_target = make_sort_input_target(root,
                                                       final_target,
                                                       &have_postponed_srfs);
            sort_input_target_parallel_safe =
                is_parallel_safe(root, (Node *) sort_input_target->exprs);
        }
        else
        {
            sort_input_target = final_target;//不存在,则直接赋值
            sort_input_target_parallel_safe = final_target_parallel_safe;
        }

        /*
         * If we have window functions to deal with, the output from any
         * grouping step needs to be what the window functions want;
         * otherwise, it should be sort_input_target.
         * 如果要处理窗口函数,任何分组步骤的输出都需要满足窗口函数的要求;
         * 否则,它应该是sort_input_target。
         */
        if (activeWindows)//存在窗口函数?
        {
            grouping_target = make_window_input_target(root,
                                                       final_target,
                                                       activeWindows);
            grouping_target_parallel_safe =
                is_parallel_safe(root, (Node *) grouping_target->exprs);
        }
        else
        {
            grouping_target = sort_input_target;
            grouping_target_parallel_safe = sort_input_target_parallel_safe;
        }

        /*
         * If we have grouping or aggregation to do, the topmost scan/join
         * plan node must emit what the grouping step wants; otherwise, it
         * should emit grouping_target.
         * 如果要进行分组或聚合,最外层的扫描/连接计划节点必须发出分组步骤需要的内容;
         * 否则,它应该设置grouping_target。
         */
        have_grouping = (parse->groupClause || parse->groupingSets ||
                         parse->hasAggs || root->hasHavingQual);
        if (have_grouping)
        {//存在group等分组语句
            scanjoin_target = make_group_input_target(root, final_target);
            scanjoin_target_parallel_safe =
                is_parallel_safe(root, (Node *) grouping_target->exprs);
        }
        else
        {
            scanjoin_target = grouping_target;
            scanjoin_target_parallel_safe = grouping_target_parallel_safe;
        }

        /*
         * If there are any SRFs in the targetlist, we must separate each of
         * these PathTargets into SRF-computing and SRF-free targets.  Replace
         * each of the named targets with a SRF-free version, and remember the
         * list of additional projection steps we need to add afterwards.
         * 如果targetlist中有任何SRFs,我们必须将这些PathKeys分别划分为SRF-computing和SRF-free 目标列。
         * 用一个没有SRF的版本替换每个指定的目标,并记住后面需要添加的其他投影步骤链表。
         */
        if (parse->hasTargetSRFs)//存在SRFs
        {
            /* final_target doesn't recompute any SRFs in sort_input_target */
            //在sort_input_target中不需要重复计算SRFs
            split_pathtarget_at_srfs(root, final_target, sort_input_target,
                                     &final_targets,
                                     &final_targets_contain_srfs);
            final_target = linitial_node(PathTarget, final_targets);
            Assert(!linitial_int(final_targets_contain_srfs));
            /* likewise for sort_input_target vs. grouping_target */
            split_pathtarget_at_srfs(root, sort_input_target, grouping_target,
                                     &sort_input_targets,
                                     &sort_input_targets_contain_srfs);
            sort_input_target = linitial_node(PathTarget, sort_input_targets);
            Assert(!linitial_int(sort_input_targets_contain_srfs));
            /* likewise for grouping_target vs. scanjoin_target */
            split_pathtarget_at_srfs(root, grouping_target, scanjoin_target,
                                     &grouping_targets,
                                     &grouping_targets_contain_srfs);
            grouping_target = linitial_node(PathTarget, grouping_targets);
            Assert(!linitial_int(grouping_targets_contain_srfs));
            /* scanjoin_target will not have any SRFs precomputed for it */
            split_pathtarget_at_srfs(root, scanjoin_target, NULL,
                                     &scanjoin_targets,
                                     &scanjoin_targets_contain_srfs);
            scanjoin_target = linitial_node(PathTarget, scanjoin_targets);
            Assert(!linitial_int(scanjoin_targets_contain_srfs));
        }
        else
        {
            /* initialize lists; for most of these, dummy values are OK */
            //初始化链表
            final_targets = final_targets_contain_srfs = NIL;
            sort_input_targets = sort_input_targets_contain_srfs = NIL;
            grouping_targets = grouping_targets_contain_srfs = NIL;
            scanjoin_targets = list_make1(scanjoin_target);
            scanjoin_targets_contain_srfs = NIL;
        }

        /* Apply scan/join target. */
         //应用扫描/连接target
        scanjoin_target_same_exprs = list_length(scanjoin_targets) == 1
            && equal(scanjoin_target->exprs, current_rel->reltarget->exprs);
        apply_scanjoin_target_to_paths(root, current_rel, scanjoin_targets,
                                       scanjoin_targets_contain_srfs,
                                       scanjoin_target_parallel_safe,
                                       scanjoin_target_same_exprs);

        /*
         * Save the various upper-rel PathTargets we just computed into
         * root->upper_targets[].  The core code doesn't use this, but it
         * provides a convenient place for extensions to get at the info.  For
         * consistency, we save all the intermediate targets, even though some
         * of the corresponding upperrels might not be needed for this query.
         * 保存刚刚计算的各种upper- >upper_targets[]信息。
         * 核心代码不使用这个功能,但是它为扩展提供了一个方便的地方来获取信息。
         * 为了保持一致性,我们保存了所有的中间目标列,即使这个查询可能不需要一些相应的上层关系。
         */
         //赋值
        root->upper_targets[UPPERREL_FINAL] = final_target;
        root->upper_targets[UPPERREL_WINDOW] = sort_input_target;
        root->upper_targets[UPPERREL_GROUP_AGG] = grouping_target;

        /*
         * If we have grouping and/or aggregation, consider ways to implement
         * that.  We build a new upperrel representing the output of this
         * phase.
         * 如果我们有分组和/或聚合,考虑如何实现它。需要构建一个表示此阶段输出的上层关系。
         */
        if (have_grouping)//存在分组操作
        {
            current_rel = create_grouping_paths(root,
                                                current_rel,
                                                grouping_target,
                                                grouping_target_parallel_safe,
                                                &agg_costs,
                                                gset_data);//创建分组访问路径
            /* Fix things up if grouping_target contains SRFs */
            if (parse->hasTargetSRFs)
                adjust_paths_for_srfs(root, current_rel,
                                      grouping_targets,
                                      grouping_targets_contain_srfs);
        }

        /*
         * If we have window functions, consider ways to implement those.  We
         * build a new upperrel representing the output of this phase.
         * 如果有窗口函数,考虑如何实现这些函数。
         * 我们建立一个新的上层关系表示这个阶段的输出。
         */
        if (activeWindows)//存在窗口函数
        {
            current_rel = create_window_paths(root,
                                              current_rel,
                                              grouping_target,
                                              sort_input_target,
                                              sort_input_target_parallel_safe,
                                              tlist,
                                              wflists,
                                              activeWindows);
            /* Fix things up if sort_input_target contains SRFs */
            if (parse->hasTargetSRFs)
                adjust_paths_for_srfs(root, current_rel,
                                      sort_input_targets,
                                      sort_input_targets_contain_srfs);
        }

        /*
         * If there is a DISTINCT clause, consider ways to implement that. We
         * build a new upperrel representing the output of this phase.
         * 如果有一个DISTINCT子句,考虑如何实现它。构建一个表示此阶段输出的上层关系。
         */
        if (parse->distinctClause)//存在distinct?
        {
            current_rel = create_distinct_paths(root,
                                                current_rel);
        }
    }                           /* end of if (setOperations) */

    /*
     * If ORDER BY was given, consider ways to implement that, and generate a
     * new upperrel containing only paths that emit the correct ordering and
     * project the correct final_target.  We can apply the original
     * limit_tuples limit in sort costing here, but only if there are no
     * postponed SRFs.
     * 如果指定了ORDER BY,考虑实现它的方法,并生成一个仅包含ORDER和final_target的Path的上层关系。
     * 我们可以在排序成本中应用初始的limit_tuples限制,但前提是没有延迟的SRFs。
     */
    if (parse->sortClause)//存在sort语句?
    {
        current_rel = create_ordered_paths(root,
                                           current_rel,
                                           final_target,
                                           final_target_parallel_safe,
                                           have_postponed_srfs ? -1.0 :
                                           limit_tuples);
        /* Fix things up if final_target contains SRFs */
        if (parse->hasTargetSRFs)
            adjust_paths_for_srfs(root, current_rel,
                                  final_targets,
                                  final_targets_contain_srfs);
    }

    /*
     * Now we are prepared to build the final-output upperrel.
     * 可以构建最终的关系了!
     */
    final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL);//获取最终的RelOptInfo(用于替换RTE)

    /*
     * If the input rel is marked consider_parallel and there's nothing that's
     * not parallel-safe in the LIMIT clause, then the final_rel can be marked
     * consider_parallel as well.  Note that if the query has rowMarks or is
     * not a SELECT, consider_parallel will be false for every relation in the
     * query.
     * 如果关系被标记为consider_parallel,并且在LIMIT子句中没有任何非并行安全的地方,
     * 那么final_rel也可以被标记为consider_parallel。
     * 请注意,如果查询有rowMarks或不是SELECT语句,则认为对查询中的每个关系consider_parallel都为false。
     */
    if (current_rel->consider_parallel &&
        is_parallel_safe(root, parse->limitOffset) &&
        is_parallel_safe(root, parse->limitCount))
        final_rel->consider_parallel = true;//并行

    /*
     * If the current_rel belongs to a single FDW, so does the final_rel.
     * 如current_rel属于某个单独的FDW,设置final_rel信息
     */
    final_rel->serverid = current_rel->serverid;
    final_rel->userid = current_rel->userid;
    final_rel->useridiscurrent = current_rel->useridiscurrent;
    final_rel->fdwroutine = current_rel->fdwroutine;

    /*
     * Generate paths for the final_rel.  Insert all surviving paths, with
     * LockRows, Limit, and/or ModifyTable steps added if needed.
     * 为final_rel生成访问路径.
     * 插入所有筛选后的访问路径,包含需添加的LockRows/Limit/ModifyTable步骤
     */
    foreach(lc, current_rel->pathlist)//逐一遍历访问路径
    {
        Path       *path = (Path *) lfirst(lc);

        /*
         * If there is a FOR [KEY] UPDATE/SHARE clause, add the LockRows node.
         * (Note: we intentionally test parse->rowMarks not root->rowMarks
         * here.  If there are only non-locking rowmarks, they should be
         * handled by the ModifyTable node instead.  However, root->rowMarks
         * is what goes into the LockRows node.)
         * 如果存在FOR [KEY] UPDATE/SHARE子句,则添加LockRows节点。
         * (注意:我们在这里有意测试的是parse->rowMarks,而不是root->rowMarks。
         * 如果只有非锁定行标记,则应该由ModifyTable节点处理。
         * 但是,root->rowMarks是进入LockRows节点的行标记。
         */
        if (parse->rowMarks)
        {
            path = (Path *) create_lockrows_path(root, final_rel, path,
                                                 root->rowMarks,
                                                 SS_assign_special_param(root));
        }

        /*
         * If there is a LIMIT/OFFSET clause, add the LIMIT node.
         * 如果存在LIMIT/OFFSET子句,添加LIMIT节点
         */
        if (limit_needed(parse))
        {
            path = (Path *) create_limit_path(root, final_rel, path,
                                              parse->limitOffset,
                                              parse->limitCount,
                                              offset_est, count_est);
        }

        /*
         * If this is an INSERT/UPDATE/DELETE, and we're not being called from
         * inheritance_planner, add the ModifyTable node.
         * 如为INSERT/UPDATE/DELETE,而且不是从inheritance_planner函数中调用,则添加ModifyTable节点
         */
        if (parse->commandType != CMD_SELECT && !inheritance_update)//非查询语句
        {
            List       *withCheckOptionLists;
            List       *returningLists;
            List       *rowMarks;

            /*
             * Set up the WITH CHECK OPTION and RETURNING lists-of-lists, if
             * needed.
             * 如需要,添加WITH CHECK OPTION and RETURNING信息
             */
            if (parse->withCheckOptions)
                withCheckOptionLists = list_make1(parse->withCheckOptions);
            else
                withCheckOptionLists = NIL;

            if (parse->returningList)
                returningLists = list_make1(parse->returningList);
            else
                returningLists = NIL;

            /*
             * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node
             * will have dealt with fetching non-locked marked rows, else we
             * need to have ModifyTable do that.
             * 如果存在FOR [KEY] UPDATE/SHARE子句,那么LockRows节点将处理获取非带锁标记的行,
             * 否则我们需要使用ModifyTable来完成。
             */
            if (parse->rowMarks)
                rowMarks = NIL;
            else
                rowMarks = root->rowMarks;

            path = (Path *)
                create_modifytable_path(root, final_rel,
                                        parse->commandType,
                                        parse->canSetTag,
                                        parse->resultRelation,
                                        NIL,
                                        false,
                                        list_make1_int(parse->resultRelation),
                                        list_make1(path),
                                        list_make1(root),
                                        withCheckOptionLists,
                                        returningLists,
                                        rowMarks,
                                        parse->onConflict,
                                        SS_assign_special_param(root));
        }

        /* And shove it into final_rel */
        //添加到final_rel中
        add_path(final_rel, path);
    }

    /*
     * Generate partial paths for final_rel, too,xxwssssssssssssssssss if outer query levels might
     * be able to make use of them.
     * 并行执行访问路径
     */
    if (final_rel->consider_parallel && root->query_level > 1 &&
        !limit_needed(parse))
    {
        Assert(!parse->rowMarks && parse->commandType == CMD_SELECT);
        foreach(lc, current_rel->partial_pathlist)
        {
            Path       *partial_path = (Path *) lfirst(lc);

            add_partial_path(final_rel, partial_path);
        }
    }

    /*
     * If there is an FDW that's responsible for all baserels of the query,
     * let it consider adding ForeignPaths.
     * 如查询中存在FDW,添加ForeignPaths
     */
    if (final_rel->fdwroutine &&
        final_rel->fdwroutine->GetForeignUpperPaths)
        final_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_FINAL,
                                                    current_rel, final_rel,
                                                    NULL);

    /* Let extensions possibly add some more paths */
    //通过扩展添加访问路径
    if (create_upper_paths_hook)
        (*create_upper_paths_hook) (root, UPPERREL_FINAL,
                                    current_rel, final_rel, NULL);

    /* Note: currently, we leave it to callers to do set_cheapest() */
    //注意:目前的做法是让调用放来执行set_cheap()函数
}

到此,关于“PostgreSQL中grouping_planner函数有什么作用”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!

推荐阅读:
  1. postgresql有什么作用
  2. PostgreSQL的dump函数有什么作用

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

postgresql

上一篇:如何使用Echarts制作可视化图表

下一篇:Django中的unittest应用是什么

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》