PostgreSQL中函数reconsider_outer_join_clauses的主要实现逻辑是什么

发布时间:2021-11-11 10:53:24 作者:iii
来源:亿速云 阅读:148

本篇内容介绍了“PostgreSQL中函数reconsider_outer_join_clauses的主要实现逻辑是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

query_planner代码片段:

     //...
     /*
      * Examine the targetlist and join tree, adding entries to baserel
      * targetlists for all referenced Vars, and generating PlaceHolderInfo
      * entries for all referenced PlaceHolderVars.  Restrict and join clauses
      * are added to appropriate lists belonging to the mentioned relations. We
      * also build EquivalenceClasses for provably equivalent expressions. The
      * SpecialJoinInfo list is also built to hold information about join order
      * restrictions.  Finally, we form a target joinlist for make_one_rel() to
      * work from.
      */
     build_base_rel_tlists(root, tlist);//构建"base rels"的投影列
 
     find_placeholders_in_jointree(root);//处理jointree中的PHI
 
     find_lateral_references(root);//处理jointree中Lateral依赖
 
     joinlist = deconstruct_jointree(root);//分解jointree

     /*
      * Reconsider any postponed outer-join quals now that we have built up
      * equivalence classes.  (This could result in further additions or
      * mergings of classes.)
      */
     reconsider_outer_join_clauses(root);//已创建等价类,那么需要重新考虑被下推后处理的外连接表达式
 
     /*
      * If we formed any equivalence classes, generate additional restriction
      * clauses as appropriate.  (Implied join clauses are formed on-the-fly
      * later.)
      */
     generate_base_implied_equalities(root);//等价类构建后,生成因此外加的约束语句
 
     //...

一、重要的数据结构

RelOptInfo
与上节一样,RelOptInfo结构体贯彻逻辑优化和物理优化过程的始终,需不时Review.

 typedef struct RelOptInfo
 {
     NodeTag     type;//节点标识
 
     RelOptKind  reloptkind;//RelOpt类型
 
     /* all relations included in this RelOptInfo */
     Relids      relids;         /*Relids(rtindex)集合 set of base relids (rangetable indexes) */
 
     /* size estimates generated by planner */
     double      rows;           /*结果元组的估算数量 estimated number of result tuples */
 
     /* per-relation planner control flags */
     bool        consider_startup;   /*是否考虑启动成本?是,需要保留启动成本低的路径 keep cheap-startup-cost paths? */
     bool        consider_param_startup; /*是否考虑参数化?的路径 ditto, for parameterized paths? */
     bool        consider_parallel;  /*是否考虑并行处理路径 consider parallel paths? */
 
     /* default result targetlist for Paths scanning this relation */
     struct PathTarget *reltarget;   /*扫描该Relation时默认的结果 list of Vars/Exprs, cost, width */
 
     /* materialization information */
     List       *pathlist;       /*访问路径链表 Path structures */
     List       *ppilist;        /*路径链表中使用参数化路径进行 ParamPathInfos used in pathlist */
     List       *partial_pathlist;   /* partial Paths */
     struct Path *cheapest_startup_path;//代价最低的启动路径
     struct Path *cheapest_total_path;//代价最低的整体路径
     struct Path *cheapest_unique_path;//代价最低的获取唯一值的路径
     List       *cheapest_parameterized_paths;//代价最低的参数化?路径链表
 
     /* parameterization information needed for both base rels and join rels */
     /* (see also lateral_vars and lateral_referencers) */
     Relids      direct_lateral_relids;  /*使用lateral语法,需依赖的Relids rels directly laterally referenced */
     Relids      lateral_relids; /* minimum parameterization of rel */
 
     /* information about a base rel (not set for join rels!) */
     //reloptkind=RELOPT_BASEREL时使用的数据结构
     Index       relid;          /* Relation ID */
     Oid         reltablespace;  /* 表空间 containing tablespace */
     RTEKind     rtekind;        /* 基表?子查询?还是函数等等?RELATION, SUBQUERY, FUNCTION, etc */
     AttrNumber  min_attr;       /* 最小的属性编号 smallest attrno of rel (often <0) */
     AttrNumber  max_attr;       /* 最大的属性编号 largest attrno of rel */
     Relids     *attr_needed;    /* 数组 array indexed [min_attr .. max_attr] */
     int32      *attr_widths;    /* 属性宽度 array indexed [min_attr .. max_attr] */
     List       *lateral_vars;   /* 关系依赖的Vars/PHVs LATERAL Vars and PHVs referenced by rel */
     Relids      lateral_referencers;    /*依赖该关系的Relids rels that reference me laterally */
     List       *indexlist;      /* 该关系的IndexOptInfo链表 list of IndexOptInfo */
     List       *statlist;       /* 统计信息链表 list of StatisticExtInfo */
     BlockNumber pages;          /* 块数 size estimates derived from pg_class */
     double      tuples;         /* 元组数 */
     double      allvisfrac;     /* ? */
     PlannerInfo *subroot;       /* 如为子查询,存储子查询的root if subquery */
     List       *subplan_params; /* 如为子查询,存储子查询的参数 if subquery */
     int         rel_parallel_workers;   /* 并行执行,需要多少个workers? wanted number of parallel workers */
 
     /* Information about foreign tables and foreign joins */
     //FWD相关信息
     Oid         serverid;       /* identifies server for the table or join */
     Oid         userid;         /* identifies user to check access as */
     bool        useridiscurrent;    /* join is only valid for current user */
     /* use "struct FdwRoutine" to avoid including fdwapi.h here */
     struct FdwRoutine *fdwroutine;
     void       *fdw_private;
 
     /* cache space for remembering if we have proven this relation unique */
     //已知的,可保证唯一的Relids链表
     List       *unique_for_rels;    /* known unique for these other relid
                                      * set(s) */
     List       *non_unique_for_rels;    /* 已知的,不唯一的Relids链表 known not unique for these set(s) */
 
     /* used by various scans and joins: */
     List       *baserestrictinfo;   /* 如为基本关系,存储约束条件 RestrictInfo structures (if base rel) */
     QualCost    baserestrictcost;   /* 解析约束表达式的成本? cost of evaluating the above */
     Index       baserestrict_min_security;  /* 最低安全等级 min security_level found in
                                              * baserestrictinfo */
     List       *joininfo;       /* 连接语句的约束条件信息 RestrictInfo structures for join clauses
                                  * involving this rel */
     bool        has_eclass_joins;   /* 是否存在等价类连接? T means joininfo is incomplete */
 
     /* used by partitionwise joins: */
     bool        consider_partitionwise_join;    /* 分区? consider partitionwise
                                                  * join paths? (if
                                                  * partitioned rel) */
     Relids      top_parent_relids;  /* Relids of topmost parents (if "other"
                                      * rel) */
 
     /* used for partitioned relations */
     //分区表使用
     PartitionScheme part_scheme;    /* 分区的schema Partitioning scheme. */
     int         nparts;         /* 分区数 number of partitions */
     struct PartitionBoundInfoData *boundinfo;   /* 分区边界信息 Partition bounds */
     List       *partition_qual; /* 分区约束 partition constraint */
     struct RelOptInfo **part_rels;  /* 分区的RelOptInfo数组 Array of RelOptInfos of partitions,
                                      * stored in the same order of bounds */
     List      **partexprs;      /* 非空分区键表达式 Non-nullable partition key expressions. */
     List      **nullable_partexprs; /* 可为空的分区键表达式 Nullable partition key expressions. */
     List       *partitioned_child_rels; /* RT Indexes链表 List of RT indexes. */
 } RelOptInfo;

二、源码解读

reconsider_outer_join_clauses函数
该函数遍历优化器信息(PlannerInfo)中的外连接子句(left_join_clauses),把条件分发到合适的地方,其中限制条件(Where子句中的条件)分发到RelOptInfo->baserestrictinfo中,连接条件(连接语句中的条件ON XX)分发到joininfo中

  /*
  * reconsider_outer_join_clauses
  *    Re-examine any outer-join clauses that were set aside by
  *    distribute_qual_to_rels(), and see if we can derive any
  *    EquivalenceClasses from them.  Then, if they were not made
  *    redundant, push them out into the regular join-clause lists.
  *
  * When we have mergejoinable clauses A = B that are outer-join clauses,
  * we can't blindly combine them with other clauses A = C to deduce B = C,
  * since in fact the "equality" A = B won't necessarily hold above the
  * outer join (one of the variables might be NULL instead).  Nonetheless
  * there are cases where we can add qual clauses using transitivity.
  *
  * One case that we look for here is an outer-join clause OUTERVAR = INNERVAR
  * for which there is also an equivalence clause OUTERVAR = CONSTANT.
  * It is safe and useful to push a clause INNERVAR = CONSTANT into the
  * evaluation of the inner (nullable) relation, because any inner rows not
  * meeting this condition will not contribute to the outer-join result anyway.
  * (Any outer rows they could join to will be eliminated by the pushed-down
  * equivalence clause.)
  *
  * Note that the above rule does not work for full outer joins; nor is it
  * very interesting to consider cases where the generated equivalence clause
  * would involve relations outside the outer join, since such clauses couldn't
  * be pushed into the inner side's scan anyway.  So the restriction to
  * outervar = pseudoconstant is not really giving up anything.
  *
  * For full-join cases, we can only do something useful if it's a FULL JOIN
  * USING and a merged column has an equivalence MERGEDVAR = CONSTANT.
  * By the time it gets here, the merged column will look like
  *      COALESCE(LEFTVAR, RIGHTVAR)
  * and we will have a full-join clause LEFTVAR = RIGHTVAR that we can match
  * the COALESCE expression to. In this situation we can push LEFTVAR = CONSTANT
  * and RIGHTVAR = CONSTANT into the input relations, since any rows not
  * meeting these conditions cannot contribute to the join result.
  *
  * Again, there isn't any traction to be gained by trying to deal with
  * clauses comparing a mergedvar to a non-pseudoconstant.  So we can make
  * use of the EquivalenceClasses to search for matching variables that were
  * equivalenced to constants.  The interesting outer-join clauses were
  * accumulated for us by distribute_qual_to_rels.
  *
  * When we find one of these cases, we implement the changes we want by
  * generating a new equivalence clause INNERVAR = CONSTANT (or LEFTVAR, etc)
  * and pushing it into the EquivalenceClass structures.  This is because we
  * may already know that INNERVAR is equivalenced to some other var(s), and
  * we'd like the constant to propagate to them too.  Note that it would be
  * unsafe to merge any existing EC for INNERVAR with the OUTERVAR's EC ---
  * that could result in propagating constant restrictions from
  * INNERVAR to OUTERVAR, which would be very wrong.
  *
  * It's possible that the INNERVAR is also an OUTERVAR for some other
  * outer-join clause, in which case the process can be repeated.  So we repeat
  * looping over the lists of clauses until no further deductions can be made.
  * Whenever we do make a deduction, we remove the generating clause from the
  * lists, since we don't want to make the same deduction twice.
  *
  * If we don't find any match for a set-aside outer join clause, we must
  * throw it back into the regular joinclause processing by passing it to
  * distribute_restrictinfo_to_rels().  If we do generate a derived clause,
  * however, the outer-join clause is redundant.  We still throw it back,
  * because otherwise the join will be seen as a clauseless join and avoided
  * during join order searching; but we mark it as redundant to keep from
  * messing up the joinrel's size estimate.  (This behavior means that the
  * API for this routine is uselessly complex: we could have just put all
  * the clauses into the regular processing initially.  We keep it because
  * someday we might want to do something else, such as inserting "dummy"
  * joinclauses instead of real ones.)
  *
  * Outer join clauses that are marked outerjoin_delayed are special: this
  * condition means that one or both VARs might go to null due to a lower
  * outer join.  We can still push a constant through the clause, but only
  * if its operator is strict; and we *have to* throw the clause back into
  * regular joinclause processing.  By keeping the strict join clause,
  * we ensure that any null-extended rows that are mistakenly generated due
  * to suppressing rows not matching the constant will be rejected at the
  * upper outer join.  (This doesn't work for full-join clauses.)
  */
 void
 reconsider_outer_join_clauses(PlannerInfo *root)
 {
     bool        found;
     ListCell   *cell;
     ListCell   *prev;
     ListCell   *next;
 
     /* Outer loop repeats until we find no more deductions */
     do
     {
         found = false;
 
         /* Process the LEFT JOIN clauses */
         prev = NULL;
         for (cell = list_head(root->left_join_clauses); cell; cell = next)//遍历left_join_clauses
         {
             RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
 
             next = lnext(cell);
             if (reconsider_outer_join_clause(root, rinfo, true))
             {
                 found = true;
                 /* remove it from the list */
                 root->left_join_clauses =
                     list_delete_cell(root->left_join_clauses, cell, prev);//如可以,则去掉连接条件(移到约束条件中)
                 /* we throw it back anyway (see notes above) */
                 /* but the thrown-back clause has no extra selectivity */
                 rinfo->norm_selec = 2.0;
                 rinfo->outer_selec = 1.0;
                 distribute_restrictinfo_to_rels(root, rinfo);//分发到RelOptInfo中
             }
             else
                 prev = cell;
         }
 
         /* Process the RIGHT JOIN clauses */
         prev = NULL;
         for (cell = list_head(root->right_join_clauses); cell; cell = next)//处理右连接
         {
             RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
 
             next = lnext(cell);
             if (reconsider_outer_join_clause(root, rinfo, false))
             {
                 found = true;
                 /* remove it from the list */
                 root->right_join_clauses =
                     list_delete_cell(root->right_join_clauses, cell, prev);
                 /* we throw it back anyway (see notes above) */
                 /* but the thrown-back clause has no extra selectivity */
                 rinfo->norm_selec = 2.0;
                 rinfo->outer_selec = 1.0;
                 distribute_restrictinfo_to_rels(root, rinfo);
             }
             else
                 prev = cell;
         }
 
         /* Process the FULL JOIN clauses */
         prev = NULL;
         for (cell = list_head(root->full_join_clauses); cell; cell = next)//全连接
         {
             RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
 
             next = lnext(cell);
             if (reconsider_full_join_clause(root, rinfo))
             {
                 found = true;
                 /* remove it from the list */
                 root->full_join_clauses =
                     list_delete_cell(root->full_join_clauses, cell, prev);
                 /* we throw it back anyway (see notes above) */
                 /* but the thrown-back clause has no extra selectivity */
                 rinfo->norm_selec = 2.0;
                 rinfo->outer_selec = 1.0;
                 distribute_restrictinfo_to_rels(root, rinfo);
             }
             else
                 prev = cell;
         }
     } while (found);
   //处理连接条件链表中余下的条件
     /* Now, any remaining clauses have to be thrown back */
     foreach(cell, root->left_join_clauses)
     {
         RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
 
         distribute_restrictinfo_to_rels(root, rinfo);
     }
     foreach(cell, root->right_join_clauses)
     {
         RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
 
         distribute_restrictinfo_to_rels(root, rinfo);
     }
     foreach(cell, root->full_join_clauses)
     {
         RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
 
         distribute_restrictinfo_to_rels(root, rinfo);
     }
 }
 
 /*
  * reconsider_outer_join_clauses for a single LEFT/RIGHT JOIN clause
  *
  * Returns true if we were able to propagate a constant through the clause.
  */
 static bool
 reconsider_outer_join_clause(PlannerInfo *root, RestrictInfo *rinfo,
                              bool outer_on_left)
 {
     Expr       *outervar,
                *innervar;
     Oid         opno,
                 collation,
                 left_type,
                 right_type,
                 inner_datatype;
     Relids      inner_relids,
                 inner_nullable_relids;
     ListCell   *lc1;
 
     Assert(is_opclause(rinfo->clause));
     opno = ((OpExpr *) rinfo->clause)->opno;
     collation = ((OpExpr *) rinfo->clause)->inputcollid;
 
     /* If clause is outerjoin_delayed, operator must be strict */
     if (rinfo->outerjoin_delayed && !op_strict(opno))
         return false;
 
     /* Extract needed info from the clause */
     op_input_types(opno, &left_type, &right_type);
     if (outer_on_left)
     {
         outervar = (Expr *) get_leftop(rinfo->clause);
         innervar = (Expr *) get_rightop(rinfo->clause);
         inner_datatype = right_type;
         inner_relids = rinfo->right_relids;
     }
     else
     {
         outervar = (Expr *) get_rightop(rinfo->clause);
         innervar = (Expr *) get_leftop(rinfo->clause);
         inner_datatype = left_type;
         inner_relids = rinfo->left_relids;
     }
     inner_nullable_relids = bms_intersect(inner_relids,
                                           rinfo->nullable_relids);
 
     /* Scan EquivalenceClasses for a match to outervar */
     foreach(lc1, root->eq_classes)//遍历等价类
     {
         EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);
         bool        match;
         ListCell   *lc2;
 
         /* Ignore EC unless it contains pseudoconstants */
         if (!cur_ec->ec_has_const)
             continue;
         /* Never match to a volatile EC */
         if (cur_ec->ec_has_volatile)
             continue;
         /* It has to match the outer-join clause as to semantics, too */
         if (collation != cur_ec->ec_collation)
             continue;
         if (!equal(rinfo->mergeopfamilies, cur_ec->ec_opfamilies))
             continue;
         /* Does it contain a match to outervar? */
         match = false;
         foreach(lc2, cur_ec->ec_members)
         {
             EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);
 
             Assert(!cur_em->em_is_child);   /* no children yet */
             if (equal(outervar, cur_em->em_expr))
             {
                 match = true;
                 break;
             }
         }
         if (!match)
             continue;           /* no match, so ignore this EC */
 
         /*
          * Yes it does!  Try to generate a clause INNERVAR = CONSTANT for each
          * CONSTANT in the EC.  Note that we must succeed with at least one
          * constant before we can decide to throw away the outer-join clause.
          */
         match = false;
         foreach(lc2, cur_ec->ec_members)
         {
             EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);
             Oid         eq_op;
             RestrictInfo *newrinfo;
 
             if (!cur_em->em_is_const)
                 continue;       /* ignore non-const members */
             eq_op = select_equality_operator(cur_ec,
                                              inner_datatype,
                                              cur_em->em_datatype);
             if (!OidIsValid(eq_op))
                 continue;       /* can't generate equality */
             newrinfo = build_implied_join_equality(eq_op,
                                                    cur_ec->ec_collation,
                                                    innervar,
                                                    cur_em->em_expr,
                                                    bms_copy(inner_relids),
                                                    bms_copy(inner_nullable_relids),
                                                    cur_ec->ec_min_security);
             if (process_equivalence(root, &newrinfo, true))
                 match = true;
         }
 
         /*
          * If we were able to equate INNERVAR to any constant, report success.
          * Otherwise, fall out of the search loop, since we know the OUTERVAR
          * appears in at most one EC.
          */
         if (match)
             return true;
         else
             break;
     }
 
     return false;               /* failed to make any deduction */
 }

generate_base_implied_equalities函数
该函数遍历所有的等价类,找出一个隐含的条件然后分发到RelOptInfo中,这样做的目的是为了在连接(join)前过滤元组,减少参与运算的元组数量.

/*
  * generate_base_implied_equalities
  *    Generate any restriction clauses that we can deduce from equivalence
  *    classes.
  *
  * When an EC contains pseudoconstants, our strategy is to generate
  * "member = const1" clauses where const1 is the first constant member, for
  * every other member (including other constants).  If we are able to do this
  * then we don't need any "var = var" comparisons because we've successfully
  * constrained all the vars at their points of creation.  If we fail to
  * generate any of these clauses due to lack of cross-type operators, we fall
  * back to the "ec_broken" strategy described below.  (XXX if there are
  * multiple constants of different types, it's possible that we might succeed
  * in forming all the required clauses if we started from a different const
  * member; but this seems a sufficiently hokey corner case to not be worth
  * spending lots of cycles on.)
  *
  * For ECs that contain no pseudoconstants, we generate derived clauses
  * "member1 = member2" for each pair of members belonging to the same base
  * relation (actually, if there are more than two for the same base relation,
  * we only need enough clauses to link each to each other).  This provides
  * the base case for the recursion: each row emitted by a base relation scan
  * will constrain all computable members of the EC to be equal.  As each
  * join path is formed, we'll add additional derived clauses on-the-fly
  * to maintain this invariant (see generate_join_implied_equalities).
  *
  * If the opfamilies used by the EC do not provide complete sets of cross-type
  * equality operators, it is possible that we will fail to generate a clause
  * that must be generated to maintain the invariant.  (An example: given
  * "WHERE a.x = b.y AND b.y = a.z", the scheme breaks down if we cannot
  * generate "a.x = a.z" as a restriction clause for A.)  In this case we mark
  * the EC "ec_broken" and fall back to regurgitating its original source
  * RestrictInfos at appropriate times.  We do not try to retract any derived
  * clauses already generated from the broken EC, so the resulting plan could
  * be poor due to bad selectivity estimates caused by redundant clauses.  But
  * the correct solution to that is to fix the opfamilies ...
  *
  * Equality clauses derived by this function are passed off to
  * process_implied_equality (in plan/initsplan.c) to be inserted into the
  * restrictinfo datastructures.  Note that this must be called after initial
  * scanning of the quals and before Path construction begins.
  *
  * We make no attempt to avoid generating duplicate RestrictInfos here: we
  * don't search ec_sources for matches, nor put the created RestrictInfos
  * into ec_derives.  Doing so would require some slightly ugly changes in
  * initsplan.c's API, and there's no real advantage, because the clauses
  * generated here can't duplicate anything we will generate for joins anyway.
  */
 void
 generate_base_implied_equalities(PlannerInfo *root)
 {
     ListCell   *lc;
     Index       rti;
 
     foreach(lc, root->eq_classes)//遍历等价类
     {
         EquivalenceClass *ec = (EquivalenceClass *) lfirst(lc);
 
         Assert(ec->ec_merged == NULL);  /* else shouldn't be in list */
         Assert(!ec->ec_broken); /* not yet anyway... */
 
         /* Single-member ECs won't generate any deductions */
         if (list_length(ec->ec_members) <= 1)//小于1个成员,无需处理类
             continue;
 
         if (ec->ec_has_const)//有常量
             generate_base_implied_equalities_const(root, ec);
         else//无常量
             generate_base_implied_equalities_no_const(root, ec);
 
         /* Recover if we failed to generate required derived clauses */
         if (ec->ec_broken)//处理失败个案
             generate_base_implied_equalities_broken(root, ec);
     }
 
     /*
      * This is also a handy place to mark base rels (which should all exist by
      * now) with flags showing whether they have pending eclass joins.
      */
     for (rti = 1; rti < root->simple_rel_array_size; rti++)//设置标记
     {
         RelOptInfo *brel = root->simple_rel_array[rti];
 
         if (brel == NULL)
             continue;
 
         brel->has_eclass_joins = has_relevant_eclass_joinclause(root, brel);
     }
 }
 
 /*
  * generate_base_implied_equalities when EC contains pseudoconstant(s)
  */
 static void
 generate_base_implied_equalities_const(PlannerInfo *root,
                                        EquivalenceClass *ec)
 {
     EquivalenceMember *const_em = NULL;
     ListCell   *lc;
 
     /*
      * In the trivial case where we just had one "var = const" clause, push
      * the original clause back into the main planner machinery.  There is
      * nothing to be gained by doing it differently, and we save the effort to
      * re-build and re-analyze an equality clause that will be exactly
      * equivalent to the old one.
      */
     if (list_length(ec->ec_members) == 2 &&
         list_length(ec->ec_sources) == 1)
     {
         RestrictInfo *restrictinfo = (RestrictInfo *) linitial(ec->ec_sources);
 
         if (bms_membership(restrictinfo->required_relids) != BMS_MULTIPLE)
         {
             distribute_restrictinfo_to_rels(root, restrictinfo);
             return;
         }
     }
 
     /*
      * Find the constant member to use.  We prefer an actual constant to
      * pseudo-constants (such as Params), because the constraint exclusion
      * machinery might be able to exclude relations on the basis of generated
      * "var = const" equalities, but "var = param" won't work for that.
      */
     foreach(lc, ec->ec_members)//获取常量Member
     {
         EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc);
 
         if (cur_em->em_is_const)
         {
             const_em = cur_em;
             if (IsA(cur_em->em_expr, Const))
                 break;
         }
     }
     Assert(const_em != NULL);
 
     /* Generate a derived equality against each other member */
     foreach(lc, ec->ec_members)
     {
         EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc);
         Oid         eq_op;
 
         Assert(!cur_em->em_is_child);   /* no children yet */
         if (cur_em == const_em)
             continue;
         eq_op = select_equality_operator(ec,
                                          cur_em->em_datatype,
                                          const_em->em_datatype);
         if (!OidIsValid(eq_op))
         {
             /* failed... */
             ec->ec_broken = true;
             break;
         }
         process_implied_equality(root, eq_op, ec->ec_collation,
                                  cur_em->em_expr, const_em->em_expr,
                                  bms_copy(ec->ec_relids),
                                  bms_union(cur_em->em_nullable_relids,
                                            const_em->em_nullable_relids),
                                  ec->ec_min_security,
                                  ec->ec_below_outer_join,
                                  cur_em->em_is_const);//下推条件
     }
 }
 
 /*
  * generate_base_implied_equalities when EC contains no pseudoconstants
  */
 static void
 generate_base_implied_equalities_no_const(PlannerInfo *root,
                                           EquivalenceClass *ec)
 {
     EquivalenceMember **prev_ems;
     ListCell   *lc;
 
     /*
      * We scan the EC members once and track the last-seen member for each
      * base relation.  When we see another member of the same base relation,
      * we generate "prev_mem = cur_mem".  This results in the minimum number
      * of derived clauses, but it's possible that it will fail when a
      * different ordering would succeed.  XXX FIXME: use a UNION-FIND
      * algorithm similar to the way we build merged ECs.  (Use a list-of-lists
      * for each rel.)
      */
     prev_ems = (EquivalenceMember **)
         palloc0(root->simple_rel_array_size * sizeof(EquivalenceMember *));
 
     foreach(lc, ec->ec_members)
     {
         EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc);
         int         relid;
 
         Assert(!cur_em->em_is_child);   /* no children yet */
         if (!bms_get_singleton_member(cur_em->em_relids, &relid))
             continue;
         Assert(relid < root->simple_rel_array_size);
 
         if (prev_ems[relid] != NULL)
         {
             EquivalenceMember *prev_em = prev_ems[relid];
             Oid         eq_op;
 
             eq_op = select_equality_operator(ec,
                                              prev_em->em_datatype,
                                              cur_em->em_datatype);
             if (!OidIsValid(eq_op))
             {
                 /* failed... */
                 ec->ec_broken = true;
                 break;
             }
             process_implied_equality(root, eq_op, ec->ec_collation,
                                      prev_em->em_expr, cur_em->em_expr,
                                      bms_copy(ec->ec_relids),
                                      bms_union(prev_em->em_nullable_relids,
                                                cur_em->em_nullable_relids),
                                      ec->ec_min_security,
                                      ec->ec_below_outer_join,
                                      false);
         }
         prev_ems[relid] = cur_em;
     }
 
     pfree(prev_ems);
 
     /*
      * We also have to make sure that all the Vars used in the member clauses
      * will be available at any join node we might try to reference them at.
      * For the moment we force all the Vars to be available at all join nodes
      * for this eclass.  Perhaps this could be improved by doing some
      * pre-analysis of which members we prefer to join, but it's no worse than
      * what happened in the pre-8.3 code.
      */
     foreach(lc, ec->ec_members)
     {
         EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc);
         List       *vars = pull_var_clause((Node *) cur_em->em_expr,
                                            PVC_RECURSE_AGGREGATES |
                                            PVC_RECURSE_WINDOWFUNCS |
                                            PVC_INCLUDE_PLACEHOLDERS);
 
         add_vars_to_targetlist(root, vars, ec->ec_relids, false);
         list_free(vars);
     }
 }
 
 /*
  * generate_base_implied_equalities cleanup after failure
  *
  * What we must do here is push any zero- or one-relation source RestrictInfos
  * of the EC back into the main restrictinfo datastructures.  Multi-relation
  * clauses will be regurgitated later by generate_join_implied_equalities().
  * (We do it this way to maintain continuity with the case that ec_broken
  * becomes set only after we've gone up a join level or two.)  However, for
  * an EC that contains constants, we can adopt a simpler strategy and just
  * throw back all the source RestrictInfos immediately; that works because
  * we know that such an EC can't become broken later.  (This rule justifies
  * ignoring ec_has_const ECs in generate_join_implied_equalities, even when
  * they are broken.)
  */
 static void
 generate_base_implied_equalities_broken(PlannerInfo *root,
                                         EquivalenceClass *ec)
 {
     ListCell   *lc;
 
     foreach(lc, ec->ec_sources)
     {
         RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(lc);
 
         if (ec->ec_has_const ||
             bms_membership(restrictinfo->required_relids) != BMS_MULTIPLE)
             distribute_restrictinfo_to_rels(root, restrictinfo);
     }
 }

 /*
  * process_implied_equality
  *    Create a restrictinfo item that says "item1 op item2", and push it
  *    into the appropriate lists.  (In practice opno is always a btree
  *    equality operator.)
  *
  * "qualscope" is the nominal syntactic level to impute to the restrictinfo.
  * This must contain at least all the rels used in the expressions, but it
  * is used only to set the qual application level when both exprs are
  * variable-free.  Otherwise the qual is applied at the lowest join level
  * that provides all its variables.
  *
  * "nullable_relids" is the set of relids used in the expressions that are
  * potentially nullable below the expressions.  (This has to be supplied by
  * caller because this function is used after deconstruct_jointree, so we
  * don't have knowledge of where the clause items came from.)
  *
  * "security_level" is the security level to assign to the new restrictinfo.
  *
  * "both_const" indicates whether both items are known pseudo-constant;
  * in this case it is worth applying eval_const_expressions() in case we
  * can produce constant TRUE or constant FALSE.  (Otherwise it's not,
  * because the expressions went through eval_const_expressions already.)
  *
  * Note: this function will copy item1 and item2, but it is caller's
  * responsibility to make sure that the Relids parameters are fresh copies
  * not shared with other uses.
  *
  * This is currently used only when an EquivalenceClass is found to
  * contain pseudoconstants.  See path/pathkeys.c for more details.
  */
 void
 process_implied_equality(PlannerInfo *root,
                          Oid opno,
                          Oid collation,
                          Expr *item1,
                          Expr *item2,
                          Relids qualscope,
                          Relids nullable_relids,
                          Index security_level,
                          bool below_outer_join,
                          bool both_const)
 {
     Expr       *clause;
 
     /*
      * Build the new clause.  Copy to ensure it shares no substructure with
      * original (this is necessary in case there are subselects in there...)
      */
     clause = make_opclause(opno,
                            BOOLOID, /* opresulttype */
                            false,   /* opretset */
                            copyObject(item1),
                            copyObject(item2),
                            InvalidOid,
                            collation);//构造条件表达式
 
     /* If both constant, try to reduce to a boolean constant. */
     if (both_const)//
     {
         clause = (Expr *) eval_const_expressions(root, (Node *) clause);
 
         /* If we produced const TRUE, just drop the clause */
         if (clause && IsA(clause, Const))
         {
             Const      *cclause = (Const *) clause;
 
             Assert(cclause->consttype == BOOLOID);
             if (!cclause->constisnull && DatumGetBool(cclause->constvalue))
                 return;
         }
     }
 
     /*
      * Push the new clause into all the appropriate restrictinfo lists.
      */
     distribute_qual_to_rels(root, (Node *) clause,
                             true, below_outer_join, JOIN_INNER,
                             security_level,
                             qualscope, NULL, NULL, nullable_relids,
                             NULL);//分发条件至RelOptInfo
 }

三、跟踪分析

测试脚本:

testdb=# explain verbose select t1.dwbh,t2.grbh
testdb-# from t_dwxx t1 left join t_grxx t2 on t1.dwbh = t2.dwbh and t2.dwbh = '1001' 
testdb-# order by t2.dwbh;
                                    QUERY PLAN                                     
-----------------------------------------------------------------------------------
 Sort  (cost=19.16..19.56 rows=160 width=114)
   Output: t1.dwbh, t2.grbh, t2.dwbh
   Sort Key: t2.dwbh
   ->  Hash Left Join  (cost=1.09..13.30 rows=160 width=114)
         Output: t1.dwbh, t2.grbh, t2.dwbh
         Hash Cond: ((t1.dwbh)::text = (t2.dwbh)::text)
         ->  Seq Scan on public.t_dwxx t1  (cost=0.00..11.60 rows=160 width=38)
               Output: t1.dwmc, t1.dwbh, t1.dwdz
         ->  Hash  (cost=1.07..1.07 rows=1 width=76)
               Output: t2.grbh, t2.dwbh
               ->  Seq Scan on public.t_grxx t2  (cost=0.00..1.07 rows=1 width=76)
                     Output: t2.grbh, t2.dwbh
                     Filter: ((t2.dwbh)::text = '1001'::text)
(13 rows)

跟踪分析,启动gdb

(gdb) b planmain.c:161
Breakpoint 1 at 0x76958b: file planmain.c, line 161.
(gdb) c
Continuing.

Breakpoint 1, query_planner (root=0x2c92a88, tlist=0x2c5f048, qp_callback=0x76e906 <standard_qp_callback>, 
    qp_extra=0x7fffed6e9c10) at planmain.c:163
warning: Source file is more recent than executable.
163   reconsider_outer_join_clauses(root);

调用前检查root(PlannerInfo)->simple_rel_array数组的内存结构,可以看到baserestrictinfo和joininfo均为NULL

(gdb) p *root->simple_rel_array[1]
$2 = {type = T_RelOptInfo, reloptkind = RELOPT_BASEREL, relids = 0x2c5fdd0, rows = 0, consider_startup = false, 
  consider_param_startup = false, consider_parallel = false, reltarget = 0x2c5fde8, pathlist = 0x0, ppilist = 0x0, 
  partial_pathlist = 0x0, cheapest_startup_path = 0x0, cheapest_total_path = 0x0, cheapest_unique_path = 0x0, 
  cheapest_parameterized_paths = 0x0, direct_lateral_relids = 0x0, lateral_relids = 0x0, relid = 1, reltablespace = 0, 
  rtekind = RTE_RELATION, min_attr = -7, max_attr = 3, attr_needed = 0x2c5fe38, attr_widths = 0x2c5fec8, 
  lateral_vars = 0x0, lateral_referencers = 0x0, indexlist = 0x2c60160, statlist = 0x0, pages = 10, tuples = 160, 
  allvisfrac = 0, subroot = 0x0, subplan_params = 0x0, rel_parallel_workers = -1, serverid = 0, userid = 0, 
  useridiscurrent = false, fdwroutine = 0x0, fdw_private = 0x0, unique_for_rels = 0x0, non_unique_for_rels = 0x0, 
  baserestrictinfo = 0x0, baserestrictcost = {startup = 0, per_tuple = 0}, baserestrict_min_security = 4294967295, 
  joininfo = 0x0, has_eclass_joins = false, top_parent_relids = 0x0, part_scheme = 0x0, nparts = 0, boundinfo = 0x0, 
  partition_qual = 0x0, part_rels = 0x0, partexprs = 0x0, nullable_partexprs = 0x0, partitioned_child_rels = 0x0}
(gdb) p *root->simple_rel_array[2]
$3 = {type = T_RelOptInfo, reloptkind = RELOPT_BASEREL, relids = 0x2c60860, rows = 0, consider_startup = false, 
  consider_param_startup = false, consider_parallel = false, reltarget = 0x2c60878, pathlist = 0x0, ppilist = 0x0, 
  partial_pathlist = 0x0, cheapest_startup_path = 0x0, cheapest_total_path = 0x0, cheapest_unique_path = 0x0, 
  cheapest_parameterized_paths = 0x0, direct_lateral_relids = 0x0, lateral_relids = 0x0, relid = 2, reltablespace = 0, 
  rtekind = RTE_RELATION, min_attr = -7, max_attr = 5, attr_needed = 0x2c608c8, attr_widths = 0x2c60958, 
  lateral_vars = 0x0, lateral_referencers = 0x0, indexlist = 0x0, statlist = 0x0, pages = 1, tuples = 6, allvisfrac = 0, 
  subroot = 0x0, subplan_params = 0x0, rel_parallel_workers = -1, serverid = 0, userid = 0, useridiscurrent = false, 
  fdwroutine = 0x0, fdw_private = 0x0, unique_for_rels = 0x0, non_unique_for_rels = 0x0, baserestrictinfo = 0x0, 
  baserestrictcost = {startup = 0, per_tuple = 0}, baserestrict_min_security = 4294967295, joininfo = 0x0, 
  has_eclass_joins = false, top_parent_relids = 0x0, part_scheme = 0x0, nparts = 0, boundinfo = 0x0, partition_qual = 0x0, 
  part_rels = 0x0, partexprs = 0x0, nullable_partexprs = 0x0, partitioned_child_rels = 0x0}
(gdb)

调用reconsider_outer_join_clauses,注意joininfo,填入了相应的数据

(gdb) p *root->simple_rel_array[1]
$4 = {type = T_RelOptInfo, reloptkind = RELOPT_BASEREL, relids = 0x2c5fdd0, rows = 0, consider_startup = false, 
  consider_param_startup = false, consider_parallel = false, reltarget = 0x2c5fde8, pathlist = 0x0, ppilist = 0x0, 
  partial_pathlist = 0x0, cheapest_startup_path = 0x0, cheapest_total_path = 0x0, cheapest_unique_path = 0x0, 
  cheapest_parameterized_paths = 0x0, direct_lateral_relids = 0x0, lateral_relids = 0x0, relid = 1, reltablespace = 0, 
  rtekind = RTE_RELATION, min_attr = -7, max_attr = 3, attr_needed = 0x2c5fe38, attr_widths = 0x2c5fec8, 
  lateral_vars = 0x0, lateral_referencers = 0x0, indexlist = 0x2c60160, statlist = 0x0, pages = 10, tuples = 160, 
  allvisfrac = 0, subroot = 0x0, subplan_params = 0x0, rel_parallel_workers = -1, serverid = 0, userid = 0, 
  useridiscurrent = false, fdwroutine = 0x0, fdw_private = 0x0, unique_for_rels = 0x0, non_unique_for_rels = 0x0, 
  baserestrictinfo = 0x0, baserestrictcost = {startup = 0, per_tuple = 0}, baserestrict_min_security = 4294967295, 
  joininfo = 0x2c61780, has_eclass_joins = false, top_parent_relids = 0x0, part_scheme = 0x0, nparts = 0, boundinfo = 0x0, 
  partition_qual = 0x0, part_rels = 0x0, partexprs = 0x0, nullable_partexprs = 0x0, partitioned_child_rels = 0x0}
(gdb) p *root->simple_rel_array[2]
$5 = {type = T_RelOptInfo, reloptkind = RELOPT_BASEREL, relids = 0x2c60860, rows = 0, consider_startup = false, 
  consider_param_startup = false, consider_parallel = false, reltarget = 0x2c60878, pathlist = 0x0, ppilist = 0x0, 
  partial_pathlist = 0x0, cheapest_startup_path = 0x0, cheapest_total_path = 0x0, cheapest_unique_path = 0x0, 
  cheapest_parameterized_paths = 0x0, direct_lateral_relids = 0x0, lateral_relids = 0x0, relid = 2, reltablespace = 0, 
  rtekind = RTE_RELATION, min_attr = -7, max_attr = 5, attr_needed = 0x2c608c8, attr_widths = 0x2c60958, 
  lateral_vars = 0x0, lateral_referencers = 0x0, indexlist = 0x0, statlist = 0x0, pages = 1, tuples = 6, allvisfrac = 0, 
  subroot = 0x0, subplan_params = 0x0, rel_parallel_workers = -1, serverid = 0, userid = 0, useridiscurrent = false, 
  fdwroutine = 0x0, fdw_private = 0x0, unique_for_rels = 0x0, non_unique_for_rels = 0x0, baserestrictinfo = 0x0, 
  baserestrictcost = {startup = 0, per_tuple = 0}, baserestrict_min_security = 4294967295, joininfo = 0x2c617d0, 
  has_eclass_joins = false, top_parent_relids = 0x0, part_scheme = 0x0, nparts = 0, boundinfo = 0x0, partition_qual = 0x0, 
  part_rels = 0x0, partexprs = 0x0, nullable_partexprs = 0x0, partitioned_child_rels = 0x0}

调用generate_base_implied_equalities,注意root->simple_rel_array[2]->baserestrictinfo,条件已下推至限制条件(原为连接条件)

(gdb) p *root->simple_rel_array[2]
$7 = {type = T_RelOptInfo, reloptkind = RELOPT_BASEREL, relids = 0x2c60860, rows = 0, consider_startup = false, 
  consider_param_startup = false, consider_parallel = false, reltarget = 0x2c60878, pathlist = 0x0, ppilist = 0x0, 
  partial_pathlist = 0x0, cheapest_startup_path = 0x0, cheapest_total_path = 0x0, cheapest_unique_path = 0x0, 
  cheapest_parameterized_paths = 0x0, direct_lateral_relids = 0x0, lateral_relids = 0x0, relid = 2, reltablespace = 0, 
  rtekind = RTE_RELATION, min_attr = -7, max_attr = 5, attr_needed = 0x2c608c8, attr_widths = 0x2c60958, 
  lateral_vars = 0x0, lateral_referencers = 0x0, indexlist = 0x0, statlist = 0x0, pages = 1, tuples = 6, allvisfrac = 0, 
  subroot = 0x0, subplan_params = 0x0, rel_parallel_workers = -1, serverid = 0, userid = 0, useridiscurrent = false, 
  fdwroutine = 0x0, fdw_private = 0x0, unique_for_rels = 0x0, non_unique_for_rels = 0x0, baserestrictinfo = 0x2c61820, 
  baserestrictcost = {startup = 0, per_tuple = 0}, baserestrict_min_security = 0, joininfo = 0x2c617d0, 
  has_eclass_joins = false, top_parent_relids = 0x0, part_scheme = 0x0, nparts = 0, boundinfo = 0x0, partition_qual = 0x0, 
  part_rels = 0x0, partexprs = 0x0, nullable_partexprs = 0x0, partitioned_child_rels = 0x0}

“PostgreSQL中函数reconsider_outer_join_clauses的主要实现逻辑是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

推荐阅读:
  1. PostgreSQL中AutoVacLauncherMain函数的实现逻辑是什么
  2. PostgreSQL中函数CommitTransaction的实现逻辑是什么

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

postgresql

上一篇:v$transaction中有哪些回滚段信息

下一篇:Django中的unittest应用是什么

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》