如何理解Java容器中Map的源码分析

发布时间:2021-11-17 14:00:19 作者:柒染
来源:亿速云 阅读:168

本篇文章为大家展示了如何理解Java容器中Map的源码分析,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

如果没有特别说明,以下源码分析基于 JDK 1.8。

一、HashMap

为了便于理解,以下源码分析以 JDK 1.7 为主。

1. 存储结构

内部包含了一个 Entry 类型的数组 table。

transient Entry[] table;

Entry 存储着键值对。它包含了四个字段,从 next 字段我们可以看出 Entry 是一个链表。 即数组中的每个位置被当成一个桶,一个桶存放一个链表。HashMap 使用拉链法来解决冲突, 同一个链表中存放哈希值相同的 Entry。

如何理解Java容器中Map的源码分析

static class Entry<K,V> implements Map.Entry<K,V> {
    //包含了四个字段
    final K key;
    V value;
    //next指向下一个节点,说明是链表结构
    Entry<K,V> next;
    int hash;
    Entry(int h, K k, V v, Entry<K,V> n) {
        value = v;
        next = n;
        key = k;
        hash = h;
    }
    public final K getKey() {
        return key;
    }
    public final V getValue() {
        return value;
    }
    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }
    public final Boolean equals(Object o) {
        if (!(o instanceof Map.Entry))
                    return false;
        Map.Entry e = (Map.Entry)o;
        Object k1 = getKey();
        Object k2 = e.getKey();
        // k1==k2 比较的是 hashcode 值,
        // k1.equals(k2)比较的是k1和k2的内容 equals 未重写,则等价于 k1 == k2
        if (k1 == k2 || (k1 != null && k1.equals(k2))) {
            Object v1 = getValue();
            Object v2 = e.getValue();
            if (v1 == v2 || (v1 != null && v1.equals(v2)))
                            return true;
        }
        return false;
    }
    public final int hashCode() {
        return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
    }
    public final String toString() {
        return getKey() + "=" + getValue();
    }
}

2. 拉链法的工作原理

HashMap<String, String> map = new HashMap<>();
map.put("K1", "V1");
map.put("K2", "V2");
map.put("K3", "V3");

应该注意到链表的插入是以头插法方式进行的,例如上面的不是插在后面,而是插入在链表头部。

查找需要分成两步进行:

3. put 操作

public V put(K key, V value) {
    if (table == EMPTY_TABLE) {
        inflateTable(threshold);
    }
    // 键为 null 单独处理
    if (key == null)
            return putForNullKey(value);
    int hash = hash(key);
    // 确定桶下标
    int i = indexFor(hash, table.length);
    // 先找出是否已经存在键为 key 的键值对,如果存在的话就更新这个键值对的值为 value
    // 时间复杂度显然和链表的长度成正比。
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {
        Object k;
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }
    modCount++;
    // 插入新键值对
    addEntry(hash, key, value, i);
    return null;
}

HashMap 允许插入键为 null 的键值对。但是因为无法调用 null 的 hashCode() 方法,也就无法确定该键值对的桶下标,只能通过强制指定一个桶下标来存放。HashMap 使用第 0 个桶存放键为 null 的键值对。

private V putForNullKey(V value) {
    //HashMap 使用第 0 个桶 table[0] 存放键为 null 的键值对。
    for (Entry<K,V> e = table[0]; e != null; e = e.next) {
        if (e.key == null) {
            V oldValue = e.value;
            e.value = value;
            // 更新值
            e.recordAccess(this);
            return oldValue;
            // 返回旧值
        }
    }
    modCount++;
    //void addEntry(int hash, K key, V value, int bucketIndex)
    addEntry(0, null, value, 0);
    return null;
}

使用链表的头插法,也就是新的键值对插在链表的头部,而不是链表的尾部。

//TODO:使用链表的头插法,也就是新的键值对插在链表的头部,而不是链表的尾部。
void addEntry(int hash, K key, V value, int bucketIndex) {
    if ((size >= threshold) && (null != table[bucketIndex])) {
        resize(2 * table.length);
        hash = (null != key) ? hash(key) : 0;
        bucketIndex = indexFor(hash, table.length);
    }
    createEntry(hash, key, value, bucketIndex);
}
void createEntry(int hash, K key, V value, int bucketIndex) {
    Entry<K,V> e = table[bucketIndex];
    // 头插法,链表头部指向新的键值对
    table[bucketIndex] = new Entry<>(hash, key, value, e);
    size++;
}
Entry(int h, K k, V v, Entry<K,V> n) {
    value = v;
    next = n;
    key = k;
    hash = h;
}

4. 确定桶下标

很多操作都需要先确定一个键值对所在的桶下标。

int hash = hash(key);
int i = indexFor(hash, table.length);

①. 计算 hash 值

final int hash(Object k) {
    int h = hashSeed;
    if (0 != h && k instanceof String) {
        return sun.misc.Hashing.stringHash42((String) k);
    }
    h ^= k.hashCode();
    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).
    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}
public final int hashCode() {
    return Objects.hashCode(key) ^ Objects.hashCode(value);
}

②. 取模

令 x = 1<<4,即 x 为 2 的 4 次方,它具有以下性质:

x   : 00010000
x-1 : 00001111

令一个数 y 与 x-1 做与运算,可以去除 y 位级表示的第 4 位以上数:

y       : 10110010
x-1     : 00001111
y&(x-1) : 00000010

这个性质和 y 对 x 取模效果是一样的:

y   : 10110010
x   : 00010000
y%x : 00000010

我们知道,位运算的代价比求模运算小的多,因此在进行这种计算时用位运算的话能带来更高的性能。

确定桶下标的最后一步是将 key 的 hash 值对桶个数取模: hash%capacity,如果能保证 capacity 为 2 的 n 次方,那么就可以将这个操作转换为位运算。

static int indexFor(int h, int length) {
    return h & (length-1);
}

就等价于

static int indexFor(int h, int length) {
    return h % length;
}

但是效率会更高。

5. 扩容-基本原理

设 HashMap 的 table 长度为 M,需要存储的键值对数量为 N,如果哈希函数满足均匀性的要求,那么每条链表的长度大约为 N/M,因此平均查找次数的复杂度为 O(N/M)。

为了让查找的成本降低,应该尽可能使得 N/M 尽可能小,因此需要保证 M 尽可能大,也就是说 table 要尽可能大。 HashMap 采用动态扩容来根据当前的 N 值来调整 M 值,使得空间效率和时间效率都能得到保证。

和扩容相关的参数主要有:capacity、size、threshold 和 load_factor。

如何理解Java容器中Map的源码分析

static final int DEFAULT_INITIAL_CAPACITY = 16;
//保证 capacity 为 2 的 n 次方,那么就可以将indexFor方法中操作转换为位运算
static final int MAXIMUM_CAPACITY = 1 << 30;
//保证 capacity 为 2 的 n 次方,那么就可以将 indexFor 方法中操作转换为位运算
static final float DEFAULT_LOAD_FACTOR = 0.75f;
transient Entry[] table;
transient int size;
int threshold;
final float loadFactor;
transient int modCount;

从下面的添加元素代码中可以看出,当需要扩容时,令 capacity 为原来的两倍。

void addEntry(int hash, K key, V value, int bucketIndex) {
    Entry<K,V> e = table[bucketIndex];
    table[bucketIndex] = new Entry<>(hash, key, value, e);
    if (size++ >= threshold)
            resize(2 * table.length);
    //令 capacity 为原来的两倍
}

扩容使用 resize() 实现,需要注意的是,扩容操作同样需要把 oldTable 的所有键值对重新插入 newTable 中,因此这一步是很费时的。

void resize(int newCapacity) {
    Entry[] oldTable = table;
    int oldCapacity = oldTable.length;
    if (oldCapacity == MAXIMUM_CAPACITY) {
        threshold = Integer.MAX_VALUE;
        return;
    }
    Entry[] newTable = new Entry[newCapacity];
    transfer(newTable);
    table = newTable;
    threshold = (int)(newCapacity * loadFactor);
}
void transfer(Entry[] newTable) {
    Entry[] src = table;
    int newCapacity = newTable.length;
    for (int j = 0; j < src.length; j++) {
        Entry<K,V> e = src[j];
        if (e != null) {
            src[j] = null;
            do {
                Entry<K,V> next = e.next;
                int i = indexFor(e.hash, newCapacity);
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            }
            while (e != null);
        }
    }
}

6. 扩容-重新计算桶下标

在进行扩容时,需要把键值对重新放到对应的桶上。HashMap 使用了一个特殊的机制,可以提升重新计算桶下标的效率。

假设原数组长度 capacity 为 16,扩容之后 new capacity 为 32:

capacity     : 00010000
new capacity : 00100000

对于一个 Key,

7. 计算数组容量

HashMap 构造函数允许用户传入的容量不是 2 的 n 次方,因为它可以自动地将传入的容量转换为 2 的 n 次方。

先考虑如何求一个数的掩码,对于 10010000,它的掩码为 11111111,可以使用以下方法得到:

mask |= mask >> 1    11011000
mask |= mask >> 2    11111110
mask |= mask >> 4    11111111

mask+1 是大于原始数字的最小的 2 的 n 次方。

num     10010000
mask+1  100000000

以下是 HashMap 中计算数组容量的代码:

static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    //得到n的掩码
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

8. 链表转红黑树

从 JDK 1.8 开始,一个桶存储的链表长度大于 8 时会将链表转换为红黑树。

9. 与 HashTable 的比较

10. 与 HashSet 的比较

HashSet 底层就是基于HashMap实现的。 (HashSet 的源码非常非常少,因为除了 clone() 方法、writeObject()方法、readObject()方法是 HashSet 自己不得不实现之外, 其他方法都是直接调用 HashMap 中的方法。)

如何理解Java容器中Map的源码分析

二、LinkedHashMap

1.存储结构

继承自 HashMap,因此具有和 HashMap 一样的快速查找特性。

public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V>

内部维护了一个双向链表,用来维护插入顺序或者 LRU 顺序。

/**
 * The head (eldest) of the doubly linked list.
 */
transient LinkedHashMap.Entry<K,V> head;
/**
 * The tail (youngest) of the doubly linked list.
 */
transient LinkedHashMap.Entry<K,V> tail;

accessOrder 决定了顺序,默认为 false,此时维护的是插入顺序。

final boolean accessOrder;

LinkedHashMap 最重要的是以下用于维护顺序的函数,它们会在 put、get 等方法中调用。

void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }

2.afterNodeAccess()

当一个节点被访问时,如果 accessOrder 为 true,则会将该节点移到链表尾部。也就是说指定为 LRU 顺序之后,在每次访问一个节点时,会将这个节点移到链表尾部,保证链表尾部是最近访问的节点,那么链表首部就是最近最久未使用的节点。

void afterNodeAccess(Node<K,V> e) {
    // move node to last
    LinkedHashMap.Entry<K,V> last;
    if (accessOrder && (last = tail) != e) {
        LinkedHashMap.Entry<K,V> p =
                    (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
        p.after = null;
        if (b == null)
                    head = a; else
                    b.after = a;
        if (a != null)
                    a.before = b; else
                    last = b;
        if (last == null)
                    head = p; else {
            p.before = last;
            last.after = p;
        }
        tail = p;
        ++modCount;
    }
}

3.afterNodeInsertion()

在 put 等操作之后执行,当 removeEldestEntry() 方法返回 true 时会移除最晚的节点,也就是链表首部节点 first。

evict 只有在构建 Map 的时候才为 false,在这里为 true。

void afterNodeInsertion(Boolean evict) {
    // possibly remove eldest
    LinkedHashMap.Entry<K,V> first;
    if (evict && (first = head) != null && removeEldestEntry(first)) {
        K key = first.key;
        removeNode(hash(key), key, null, false, true);
    }
}

removeEldestEntry() 默认为 false,如果需要让它为 true,需要继承 LinkedHashMap 并且覆盖这个方法的实现,这在实现 LRU 的缓存中特别有用,通过移除最近最久未使用的节点,从而保证缓存空间足够,并且缓存的数据都是热点数据。

protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
    return false;
}

4.LRU 缓存

以下是使用 LinkedHashMap 实现的一个 LRU 缓存:

public class LRUCache<K,V> extends LinkedHashMap<K,V>{
    private static final int MAX_ENTRIES = 3;
    LRUCache(){
        super(MAX_ENTRIES,0.75f,true);
    }
    /**
     * removeEldestEntry() 默认为 false,
     * 如果需要让它为 true,需要继承 LinkedHashMap 并且覆盖这个方法的实现,
     * 这在实现 LRU 的缓存中特别有用,通过移除最近最久未使用的节点,
     * 从而保证缓存空间足够,并且缓存的数据都是热点数据。
     */
    @Override
        protected Boolean removeEldestEntry(Map.Entry eldest) {
        return size() > MAX_ENTRIES;
    }
    public static void main(String[] args) {
        LRUCache<Integer,String> cache=new LRUCache<>();
        cache.put(1, "a");
        cache.put(2, "b");
        cache.put(3, "c");
        cache.get(1);
        //LRU  键值1被访问过了,则最近最久未访问的就是2
        cache.put(4, "d");
        System.out.println(cache.keySet());
    }
}
[3, 1, 4]

三、WeakHashMap

1.存储结构

WeakHashMap 的 Entry 继承自 WeakReference,被 WeakReference 关联的对象在下一次垃圾回收时会被回收。

WeakHashMap 主要用来实现缓存,通过使用 WeakHashMap 来引用缓存对象,由 JVM 对这部分缓存进行回收。

private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V>

2.ConcurrentCache

Tomcat 中的 ConcurrentCache 使用了 WeakHashMap 来实现缓存功能。

ConcurrentCache 采取的是分代缓存:

public final class ConcurrentCache<K, V> {
    private final int size;
    private final Map<K, V> eden;
    private final Map<K, V> longterm;
    public ConcurrentCache(int size) {
        this.size = size;
        this.eden = new ConcurrentHashMap<>(size);
        this.longterm = new WeakHashMap<>(size);
    }
    public V get(K k) {
        V v = this.eden.get(k);
        if (v == null) {
            v = this.longterm.get(k);
            if (v != null)
                            this.eden.put(k, v);
        }
        return v;
    }
    public void put(K k, V v) {
        if (this.eden.size() >= size) {
            this.longterm.putAll(this.eden);
            this.eden.clear();
        }
        this.eden.put(k, v);
    }
}

上述内容就是如何理解Java容器中Map的源码分析,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注亿速云行业资讯频道。

推荐阅读:
  1. 如何在Java容器中配置spring boot
  2. java容器详细解析

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

java map

上一篇:如何理解Java容器中ArrayList的源码分析

下一篇:jquery如何获取tr里面有几个td

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》