美团容器平台架构及容器技术实践

发布时间:2020-08-08 08:00:08 作者:美团技术团队
来源:ITPUB博客 阅读:369

大家好,我是本公众号的主持人,美团技术团队的程序员鼓励师美美。本文根据美团基础架构部/容器研发中心技术总监欧阳坚在2018 QCon(全球软件开发大会)上的演讲内容整理而成,讲述了美团容器平台架构设计,还有容器技术的实践。

背景

美团的容器集群管理平台叫做HULK。漫威动画里的HULK在发怒时会变成“绿巨人”,它的这个特性和容器的“弹性伸缩”很像,所以我们给这个平台起名为HULK。貌似有一些公司的容器平台也叫这个名字,纯属巧合。

2016年,美团开始使用容器,当时美团已经具备一定的规模,在使用容器之前就已经存在的各种系统,包括CMDB、服务治理、监控告警、发布平台等等。我们在探索容器技术时,很难放弃原有的资产。所以容器化的第一步,就是打通容器的生命周期和这些平台的交互,例如容器的申请/创建、删除/释放、发布、迁移等等。然后我们又验证了容器的可行性,证实容器可以作为线上核心业务的运行环境。

美团容器平台架构及容器技术实践

2018年,经过两年的运营和实践探索,我们对容器平台进行了一次升级,这就是容器集群管理平台HULK 2.0。

美团当前的容器使用状况是:线上业务已经超过3000多个服务,容器实例数超过30000个,很多大并发、低延时要求的核心链路服务,已经稳定地运行在HULK之上。本文主要介绍我们在容器技术上的一些实践,属于基础系统优化和打磨。

美团容器平台的基本架构

首先介绍一下美团容器平台的基础架构,相信各家的容器平台架构大体都差不多。

美团容器平台架构及容器技术实践

首先,容器平台对外对接服务治理、发布平台、CMDB、监控告警等等系统。通过和这些系统打通,容器实现了和虚拟机基本一致的使用体验。研发人员在使用容器时可以和使用VM一样,不需要改变原来的使用习惯。

此外,容器提供弹性扩容能力,能根据一定的弹性策略动态增加和减少服务的容器节点数,从而动态地调整服务处理能力。这里还有个特殊的模块——“服务画像”,它的主要功能是通过对服务容器实例运行指标的搜集和统计,更好的完成调度容器、优化资源分配。比如可以根据某服务的容器实例的CPU、内存、IO等使用情况,来分辨这个服务属于计算密集型还是IO密集型服务,在调度时尽量把互补的容器放在一起。再比如,我们可以知道某个服务的每个容器实例在运行时会有大概500个进程,我们就会在创建容器时,给该容器加上一个合理的进程数限制(比如最大1000个进程),从而避免容器在出现问题时,占用过多的系统资源。如果这个服务的容器在运行时,突然申请创建20000个进程,我们有理由相信是业务容器遇到了Bug,通过之前的资源约束对容器进行限制,并发出告警,通知业务及时进行处理。

往下一层是“容器编排”和“镜像管理”。容器编排解决容器动态实例的问题,包括容器何时被创建、创建到哪个位置、何时被删除等等。镜像管理解决容器静态实例的问题,包括容器镜像应该如何构建、如何分发、分发的位置等等。

最下层是我们的容器运行时,美团使用主流的Linux+Docker容器方案,HULK Agent是我们在服务器上的管理代理程序。

把前面的“容器运行时”具体展开,可以看到这张架构图,按照从下到上的顺序介绍:

美团容器平台架构及容器技术实践

美团主要使用了CentOS系列的开源组件,因为我们认为Red Hat有很强的开源技术实力,比起直接使用开源社区的版本,我们希望Red Hat的开源版本能够帮助解决大部分的系统问题。我们也发现,即使部署了CentOS的开源组件,仍然有可能会碰到社区和Red Hat没有解决的问题。从某种程度上也说明,国内大型互联公司在技术应用的场景、规模、复杂度层面已经达到了世界领先的水平,所以才会先于社区、先于Red Hat的客户遇到这些问题。

容器遇到的一些问题

在容器技术本身,我们主要遇到了4个问题:隔离、稳定性、性能和推广。

容器的实现

美团容器平台架构及容器技术实践

容器本质上是把系统中为同一个业务目标服务的相关进程合成一组,放在一个叫做namespace的空间中,同一个namespace中的进程能够互相通信,同时看不见其他namespace中的进程。每个namespace可以拥有自己独立的主机名、进程ID系统、IPC、网络、文件系统、用户等等资源,在某种程度上,实现了一个简单的虚拟:让一个主机上可以同时运行多个互不感知的系统。

此外,为了限制namespace对物理资源的使用,对进程能使用的CPU、内存等资源需要做一定的限制,这就是Cgroup技术,Cgroup是Control group的意思。比如我们常说的4c4g的容器,实际上是限制这个容器namespace中所用的进程,最多能够使用4核的计算资源和4GB的内存。

简而言之,Linux内核提供namespace完成隔离,Cgroup完成资源限制。namespace+Cgroup构成了容器的底层技术(rootfs是容器文件系统层技术)。

美团的解法、改进和优化

隔离

之前一直和虚拟机打交道,但直到用上容器,才发现在容器里面看到的CPU、Memory的信息都是服务器主机的信息,而不是容器自身的配置信息,直到现在,社区版的容器还是这样。比如一个4c4g的容器,在容器内部可以看到有40颗CPU、196GB内存的资源,这些资源其实是容器所在宿主机的信息。这给人的感觉,就像是容器的“自我膨胀”,觉得自己能力很强,但实际上并没有,而且还会带来很多问题。

美团容器平台架构及容器技术实践

上图是一个内存信息隔离的例子。获取系统内存信息时,社区Linux无论在主机上还是在容器中,内核都是统一返回主机的内存信息,如果容器内的应用,按照它发现的宿主机内存来进行配置的话,实际资源是远远不够的,导致的结果就是:系统很快会发生OOM异常。

我们做的隔离工作,是在容器中获取内存信息时,内核根据容器的Cgroup信息返回容器的内存信息(类似LXCFS的工作)。

美团容器平台架构及容器技术实践

CPU信息隔离的实现和内存的类似,不再赘述,这里举一个CPU数目影响应用性能例子。

大家都知道,JVM GC(垃圾对象回收)对Java程序执行性能有一定的影响。默认的JVM使用公式“ParallelGCThreads = (ncpus <= 8) ? ncpus : 3 + ((ncpus * 5) / 8)” 来计算做并行GC的线程数,其中ncpus是JVM发现的系统CPU个数。一旦容器中JVM发现了宿主机的CPU个数(通常比容器实际CPU限制多很多),这就会导致JVM启动过多的GC线程,直接的结果就导致GC性能下降。Java服务的感受就是延时增加,TP监控曲线突刺增加,吞吐量下降。针对这个问题有各种解法:

美团容器平台架构及容器技术实践

有一段时间,我们的容器是使用root权限进行运行,实现的方法是在docker run的时候加入‘privileged=true’参数。这种粗放的使用方式,使容器能够看到所在服务器上所有容器的磁盘,导致了安全问题和性能问题。安全问题很好理解,为什么会导致性能问题呢?可以试想一下,每个容器都做一次磁盘状态扫描的场景。当然,权限过大的问题还体现在可以随意进行mount操作,可以随意的修改NTP时间等等。

在新版本中,我们去掉了容器的root权限,发现有一些副作用,比如导致一些系统调用失败。我们默认给容器额外增加了sys_ptrace和sys_admin两个权限,让容器可以运行GDB和更改主机名。如果有特例容器需要更多的权限,可以在我们的平台上按服务粒度进行配置。

美团容器平台架构及容器技术实践

Linux有两种IO:Direct IO和Buffered IO。Direct IO直接写磁盘,Duffered IO会先写到缓存再写磁盘,大部分场景下都是Buffered IO。

我们使用的Linux内核3.X,社区版本中所有容器Buffer IO共享一个内核缓存,并且缓存不隔离,没有速率限制,导致高IO容器很容易影响同主机上的其他容器。Buffer IO缓存隔离和限速在Linux 4.X里通过Cgroup V2实现,有了明显的改进,我们还借鉴了Cgroup V2的思想,在我们的Linux 3.10内核实现了相同的功能:每个容器根据自己的内存配置有对应比例的IO Cache,Cache的数据写到磁盘的速率受容器Cgroup IO配置的限制。

Docker本身支持较多对容器的Cgroup资源限制,但是K8s调用Docker时可以传递的参数较少,为了降低容器间的互相影响,我们基于服务画像的资源分配,对不同服务的容器设定不同的资源限制。除了常见的CPU、内存外,还有IO的限制、ulimit限制、PID限制等等,所以我们扩展了K8s来完成这些工作。

美团容器平台架构及容器技术实践

业务在使用容器的过程中产生core dump文件是常见的事。比如C/C++程序内存访问越界,或者系统OOM时,系统选择占用内存多的进程杀死,默认都会生成一个core dump文件。

社区容器系统默认的core dump文件会生成在宿主机上。由于一些core dump文件比较大,比如JVM的core dump通常是几个GB,或者有些存在Bug的程序,其频发的core dump,很容易快速写满宿主机的存储,并且会导致高磁盘IO,也会影响到其他容器。还有一个问题是:业务容器的使用者没有权限访问宿主机,从而拿不到dump文件进行下一步的分析。

为此,我们对core dump的流程进行了修改,让dump文件写到容器自身的文件系统中,并且使用容器自己的Cgroup IO吞吐限制。

稳定性

我们在实践中发现,影响系统稳定性的主要是Linux Kernel和Docker。虽然它们本身是很可靠的系统软件,但是在大规模、高强度的场景中,还是会存在一些Bug。这也从侧面说明,我们国内互联网公司在应用规模和应用复杂度层面也属于全球领先。

在内核方面,美团发现了Kernel 4.x Buffer IO限制的实现问题,得到了社区的确认和修复。我们还跟进了一系列CentOS的Ext4补丁,解决了一段时间内进程频繁卡死的问题。

美团容器平台架构及容器技术实践

我们碰到了两个比较关键的Red Hat版Docker稳定性问题:

面对系统内核、Docker、K8S这些开源社区的系统软件,存在一种观点是:我们不需要自己分析问题,只需要拿社区的最新更新就行了。但是我们并不认同,我们认为技术团队自身的能力很重要,主要是如下原因:

美团在解决开源系统问题时,一般会经历五个阶段:自己深挖、研发解决、关注社区、和社区交互,最后贡献给社区。

性能

容器平台性能,主要包括两个方面性能:

美团容器平台架构及容器技术实践

上图是我们CPU分配的一个例子,我们采用的主流服务器是两路24核服务器,包含两个Node,每个12核,算上超线程共48颗逻辑CPU。属于典型的NUMA(非一致访存)架构:系统中每个Node有自己的内存,Node内的CPU访问自己的内存的速度,比访问另一个Node内存的速度快很多(差一倍左右)。

过去我们曾经遇到过网络中断集中到CPU0上的问题,在大流量下可能导致网络延时增加甚至丢包。为保证网络处理能力,我们从Node0上划出了8颗逻辑CPU用来专门处理网络中断和宿主机系统上的任务,例如镜像解压这类高CPU的工作,这8颗逻辑CPU不运行任何容器的Workload。

在容器调度方面,我们的容器CPU分配尽量不跨Node,实践证明跨Node访问内存对应用性能的影响比较大。在一些计算密集型的场景下,容器分配在Node内部会提升30%以上的吞吐量。当然,按Node的分配方案也存在一定的弊端:会导致CPU的碎片增加,为了更高效地利用CPU资源,在实际系统中,我们会根据服务画像的信息,分配一些对CPU不敏感的服务容器跨Node使用CPU资源。

美团容器平台架构及容器技术实践

上图是一个真实的服务在CPU分配优化前后,响应延时的TP指标线对比。可以看到TP999线下降了一个数量级,并且所有的指标都更加平稳。

性能优化:文件系统

针对文件系统的性能优化,第一步是选型,根据统计到的应用读写特征,我们选择了Ext4文件系统(超过85%的文件读写是对小于1M文件的操作)。

Ext4文件系统有三种日志模式

我们选择了Writeback模式(默认是oderded),它在几种挂载模式中速度最快,缺点是:发生故障时数据不好恢复。我们大部分容器处于无状态,故障时在别的机器上再拉起一台即可。因此我们在性能和稳定性中,选择了性能。容器内部给应用提供可选的基于内存的文件系统tmpfs,可以提升有大量临时文件读写的服务性能。

美团容器平台架构及容器技术实践

如上图所示,在美团内部创建一个虚拟机至少经历三步,平均时间超过300秒。使用镜像创建容器平均时间23秒。容器的灵活、快速得到了显著的体现。

容器扩容23秒的平均时间包含了各个部分的优化,如扩容链路优化、镜像分发优化、初始化和业务拉起优化等等。接下来,本文主要介绍一下我们做的镜像分发和解压相关的优化。

美团容器平台架构及容器技术实践

上图是美团容器镜像管理的总体架构,其特点如下:

镜像分发是影响容器扩容时长的一个重要环节。

美团容器平台架构及容器技术实践

从上图可以看出,随着分发服务器数目的增加,原有分发时间也快速增加,而P2P镜像分发时间基本上保持稳定。

美团容器平台架构及容器技术实践

Docker的镜像拉取是一个并行下载,串行解压的过程,为了提升解压的速度,我们美团也做了一些优化工作。

对于单个层的解压,我们使用并行解压算法替换Docker默认的串行解压算法,实现上是使用pgzip替换gzip。

Docker的镜像具有分层结构,对镜像层的合并是一个“解压一层合并一层,再解压一层,再合并一层”的串行操作。实际上只有合并是需要串行的,解压可以并行起来。我们把多层的解压改成并行,解压出的数据先放在临时存储空间,最后根据层之间的依赖进行串行合并。前面的改动(并行解压所有的层到临时空间)导致磁盘IO的次数增加了近一倍,也会导致解压过程不够快。于是,我们使用基于内存的Ramdisk来存储解压出来的临时文件,减轻了额外文件写带来的开销。做了上面这些工作以后,我们又发现,容器的分层也会影响下载加解压的时间。上图是我们简单测试的结果:无论对于怎么分层的镜像并行解压,都能大幅提升解压时间,对于层数多的镜像提升更加明显。

推广

美团容器平台架构及容器技术实践

推广容器的第一步是能说出容器的优势,我们认为容器有如下优势:

这三个特性的组合,可以给业务带来更大的灵活度和更低的计算成本。

因为容器平台本身是一个技术产品,它的客户是各个业务的RD团队,因此我们需要考虑下面一些因素:

总结

Docker容器加Kubernetes编排是当前容器云的主流实践之一,美团容器集群管理平台HULK也采用了这样的方案。本文主要分享了美团在容器技术上做的一些探索和实践。内容主要涵盖美团容器云在Linux Kernel、Docker和Kubernetes层面做的一些优化工作,以及美团内部推动容器化进程的一些思考,欢迎大家跟我们交流、探讨。

作者简介

欧阳坚,2006年毕业于清华大学计算机系,拥有12年数据中心开发管理经验。曾任VMware中国Staff Engineer,无双科技CTO,中科睿光首席架构师。现任美团基础架构部/容器研发中心技术总监,负责美团容器化的相关工作。

推荐阅读:
  1. 基于kubernetes自研容器管理平台的技术实践是怎样的
  2. 美团大数据平台架构实践

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

实践 容器 平台

上一篇:PHP实现微信关注公众号扫码登录功能

下一篇:C4C Product Price List的模型中和有效期相关的两个字段

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》