您好,登录后才能下订单哦!
关联规则apriori算法是什么?这个问题可能是我们日常学习或工作经常见到的。希望通过这个问题能让你收获颇深。下面是小编给大家带来的参考内容,让我们一起来看看吧!
理解关联规则apriori算法:Apriori算法是第一个关联规则挖掘算法,也是最经典的算法,它利用逐层搜索的迭代方法找出数据库中项集的关系,以形成规则,其过程由连接【类矩阵运算】与剪枝【去掉那些没必要的中间结果】组成。
理解关联规则apriori算法:
一、概念
表1 某超市的交易数据库
交易号TID  | 顾客购买的商品  | 交易号TID  | 顾客购买的商品  | 
T1  | bread, cream, milk, tea  | T6  | bread, tea  | 
T2  | bread, cream, milk  | T7  | beer, milk, tea  | 
T3  | cake, milk  | T8  | bread, tea  | 
T4  | milk, tea  | T9  | bread, cream, milk, tea  | 
T5  | bread, cake, milk  | T10  | bread, milk, tea  | 
定义一:设I={i1,i2,…,im},是m个不同的项目的集合,每个ik称为一个项目。项目的集合I称为项集。其元素的个数称为项集的长度,长度为k的项集称为k-项集。引例中每个商品就是一个项目,项集为I={bread, beer, cake,cream, milk, tea},I的长度为6。
定义二:每笔交易T是项集I的一个子集。对应每一个交易有一个唯一标识交易号,记作TID。交易全体构成了交易数据库D,|D|等于D中交易的个数。引例中包含10笔交易,因此|D|=10。
定义三:对于项集X,设定count(X⊆T)为交易集D中包含X的交易的数量,则项集X的支持度为:
support(X)=count(X⊆T)/|D|
引例中X={bread, milk}出现在T1,T2,T5,T9和T10中,所以支持度为0.5。
定义四:最小支持度是项集的最小支持阀值,记为SUPmin,代表了用户关心的关联规则的最低重要性。支持度不小于SUPmin 的项集称为频繁集,长度为k的频繁集称为k-频繁集。如果设定SUPmin为0.3,引例中{bread, milk}的支持度是0.5,所以是2-频繁集。
定义五:关联规则是一个蕴含式:
R:X⇒Y
其中X⊂I,Y⊂I,并且X∩Y=⌀。表示项集X在某一交易中出现,则导致Y以某一概率也会出现。用户关心的关联规则,可以用两个标准来衡量:支持度和可信度。
定义六:关联规则R的支持度是交易集同时包含X和Y的交易数与|D|之比。即:
support(X⇒Y)=count(X⋃Y)/|D|
支持度反映了X、Y同时出现的概率。关联规则的支持度等于频繁集的支持度。
定义七:对于关联规则R,可信度是指包含X和Y的交易数与包含X的交易数之比。即:
confidence(X⇒Y)=support(X⇒Y)/support(X)
可信度反映了如果交易中包含X,则交易包含Y的概率。一般来说,只有支持度和可信度较高的关联规则才是用户感兴趣的。
定义八:设定关联规则的最小支持度和最小可信度为SUPmin和CONFmin。规则R的支持度和可信度均不小于SUPmin和CONFmin ,则称为强关联规则。关联规则挖掘的目的就是找出强关联规则,从而指导商家的决策。
这八个定义包含了关联规则相关的几个重要基本概念,关联规则挖掘主要有两个问题:
目前研究人员主要针对第一个问题进行研究,找出频繁集是比较困难的,而有了频繁集再生成强关联规则就相对容易了。
二、理论基础
首先来看一个频繁集的性质。
定理:如果项目集X是频繁集,那么它的非空子集都是频繁集。
根据定理,已知一个k-频繁集的项集X,X的所有k-1阶子集都肯定是频繁集,也就肯定可以找到两个k-1频繁集的项集,它们只有一项不同,且连接后等于X。这证明了通过连接k-1频繁集产生的k-候选集覆盖了k-频繁集。同时,如果k-候选集中的项集Y,包含有某个k-1阶子集不属于k-1频繁集,那么Y就不可能是频繁集,应该从候选集中裁剪掉。Apriori算法就是利用了频繁集的这个性质。
三、算法步骤:
首先是测试数据:
交易ID  | 商品ID列表  | 
T100  | I1,I2,I5  | 
T200  | I2,I4  | 
T300  | I2,I3  | 
T400  | I1,I2,I4  | 
T500  | I1,I3  | 
T600  | I2,I3  | 
T700  | I1,I3  | 
T800  | I1,I2,I3,I5  | 
T900  | I1,I2,I3  | 
算法的步骤图:

可以看到,第三轮的候选集发生了明显的缩小,这是为什么呢?
请注意取候选集的两个条件:
1.两个K项集能够连接的两个条件是,它们有K-1项是相同的。所以,(I2,I4)和(I3,I5)这种是不能够进行连接的。缩小了候选集。
2.如果一个项集是频繁集,那么它不存在不是子集的频繁集。比如(I1,I2)和(I1,I4)得到(I1,I2,I4),而(I1,I2,I4)存在子集(I1,I4)不是频繁集。缩小了候选集。
第三轮得到的2个候选集,正好支持度等于最小支持度。所以,都算入频繁集。
这时再看第四轮的候选集与频繁集结果为空
可以看到,候选集和频繁集居然为空了!因为通过第三轮得到的频繁集自连接得到{I1,I2,I3,I5},它拥有子集{I2,I3,I5},而{I2,I3,I5}不是频繁集,不满足:频繁集的子集也是频繁集这一条件,所以被剪枝剪掉了。所以整个算法终止,取最后一次计算得到的频繁集作为最终的频繁集结果:
也就是:['I1,I2,I3', 'I1,I2,I5']
四、代码:
编写Python代码实现Apriori算法。代码需要注意如下两点:
def local_data(file_path):    import pandas as pd
    dt = pd.read_excel(file_path)
    data = dt['con']
    locdata = []    for i in data:
        locdata.append(str(i).split(","))   # print(locdata)  # change to [[1,2,3],[1,2,3]]
    length = []    for i in locdata:
        length.append(len(i))  # 计算长度并存储
   # print(length)
    ki = length[length.index(max(length))]   # print(length[length.index(max(length))])  # length.index(max(length)读取最大值的位置,然后再定位取出最大值
    return locdata,kidef create_C1(data_set):    """
    Create frequent candidate 1-itemset C1 by scaning data set.
    Args:
        data_set: A list of transactions. Each transaction contains several items.
    Returns:
        C1: A set which contains all frequent candidate 1-itemsets    """
    C1 = set()    for t in data_set:        for item in t:
            item_set = frozenset([item])
            C1.add(item_set)    return C1def is_apriori(Ck_item, Lksub1):    """
    Judge whether a frequent candidate k-itemset satisfy Apriori property.
    Args:
        Ck_item: a frequent candidate k-itemset in Ck which contains all frequent
                 candidate k-itemsets.
        Lksub1: Lk-1, a set which contains all frequent candidate (k-1)-itemsets.
    Returns:
        True: satisfying Apriori property.
        False: Not satisfying Apriori property.    """
    for item in Ck_item:
        sub_Ck = Ck_item - frozenset([item])        if sub_Ck not in Lksub1:            return False    return Truedef create_Ck(Lksub1, k):    """
    Create Ck, a set which contains all all frequent candidate k-itemsets
    by Lk-1's own connection operation.
    Args:
        Lksub1: Lk-1, a set which contains all frequent candidate (k-1)-itemsets.
        k: the item number of a frequent itemset.
    Return:
        Ck: a set which contains all all frequent candidate k-itemsets.    """
    Ck = set()
    len_Lksub1 = len(Lksub1)
    list_Lksub1 = list(Lksub1)    for i in range(len_Lksub1):        for j in range(1, len_Lksub1):
            l1 = list(list_Lksub1[i])
            l2 = list(list_Lksub1[j])
            l1.sort()
            l2.sort()            if l1[0:k-2] == l2[0:k-2]:
                Ck_item = list_Lksub1[i] | list_Lksub1[j]                # pruning
                if is_apriori(Ck_item, Lksub1):
                    Ck.add(Ck_item)    return Ckdef generate_Lk_by_Ck(data_set, Ck, min_support, support_data):    """
    Generate Lk by executing a delete policy from Ck.
    Args:
        data_set: A list of transactions. Each transaction contains several items.
        Ck: A set which contains all all frequent candidate k-itemsets.
        min_support: The minimum support.
        support_data: A dictionary. The key is frequent itemset and the value is support.
    Returns:
        Lk: A set which contains all all frequent k-itemsets.    """
    Lk = set()
    item_count = {}    for t in data_set:        for item in Ck:            if item.issubset(t):                if item not in item_count:
                    item_count[item] = 1                else:
                    item_count[item] += 1
    t_num = float(len(data_set))    for item in item_count:        if (item_count[item] / t_num) >= min_support:
            Lk.add(item)
            support_data[item] = item_count[item] / t_num    return Lkdef generate_L(data_set, k, min_support):    """
    Generate all frequent itemsets.
    Args:
        data_set: A list of transactions. Each transaction contains several items.
        k: Maximum number of items for all frequent itemsets.
        min_support: The minimum support.
    Returns:
        L: The list of Lk.
        support_data: A dictionary. The key is frequent itemset and the value is support.    """
    support_data = {}
    C1 = create_C1(data_set)
    L1 = generate_Lk_by_Ck(data_set, C1, min_support, support_data)
    Lksub1 = L1.copy()
    L = []
    L.append(Lksub1)    for i in range(2, k+1):
        Ci = create_Ck(Lksub1, i)
        Li = generate_Lk_by_Ck(data_set, Ci, min_support, support_data)
        Lksub1 = Li.copy()
        L.append(Lksub1)    return L, support_datadef generate_big_rules(L, support_data, min_conf):    """
    Generate big rules from frequent itemsets.
    Args:
        L: The list of Lk.
        support_data: A dictionary. The key is frequent itemset and the value is support.
        min_conf: Minimal confidence.
    Returns:
        big_rule_list: A list which contains all big rules. Each big rule is represented
                       as a 3-tuple.    """
    big_rule_list = []
    sub_set_list = []    for i in range(0, len(L)):        for freq_set in L[i]:            for sub_set in sub_set_list:                if sub_set.issubset(freq_set):
                    conf = support_data[freq_set] / support_data[freq_set - sub_set]
                    big_rule = (freq_set - sub_set, sub_set, conf)                    if conf >= min_conf and big_rule not in big_rule_list:                        # print freq_set-sub_set, " => ", sub_set, "conf: ", conf                        big_rule_list.append(big_rule)
            sub_set_list.append(freq_set)    return big_rule_listif __name__ == "__main__":    """
    Test    """
    file_path = "test_aa.xlsx"
  
    data_set,k = local_data(file_path)
    L, support_data = generate_L(data_set, k, min_support=0.2)
    big_rules_list = generate_big_rules(L, support_data, min_conf=0.4)    print(L)    for Lk in L:        if len(list(Lk)) == 0:            break
        print("="*50)        print("frequent " + str(len(list(Lk)[0])) + "-itemsets\t\tsupport")        print("="*50)        for freq_set in Lk:            print(freq_set, support_data[freq_set])    print()    print("Big Rules")    for item in big_rules_list:        print(item[0], "=>", item[1], "conf: ", item[2])文件格式:
test_aa.xlsx
name con T1 2,3,5T2 1,2,4T3 3,5T5 2,3,4T6 2,3,5T7 1,2,4T8 3,5T9 2,3,4T10 1,2,3,4,5
感谢各位的阅读!看完上述内容,你们对关联规则apriori算法是什么大概了解了吗?希望文章内容对大家有所帮助。如果想了解更多相关文章内容,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。