利用tensorflow构建卷积神经网络(CNN)

发布时间:2020-07-04 20:02:59 作者:nineteens
来源:网络 阅读:644

  学习前言

  学习神经网络已经有一段时间,从普通的BP神经网络到LSTM长短期记忆网络都有一定的了解,但是从未系统的把整个神经网络的结构记录下来,我相信这些小记录可以帮助我更加深刻的理解神经网络。

  简介

  卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。

  其主要结构分为输入层、隐含层、输出层。

  在tensorboard中,其结构如图所示:

  对于卷积神经网络而言,其输入层、输出层与平常的卷积神经网络无异。但其隐含层可以分为三个部分,分别是卷积层(对输入数据进行特征提取)、池化层(特征选择和信息过滤)、全连接层(等价于传统前馈神经网络中的隐含层)。

  隐含层介绍

  1、卷积层

  卷积将输入图像放进一组卷积滤波器,每个滤波器激活图像中的某些特征。

  假设一副黑白图像为5*5的大小,像这样:

  利用如下卷积器进行卷积:

  

利用tensorflow构建卷积神经网络(CNN)


  卷积结果为:

  卷积过程可以提取特征,卷积神经网络是根据特征来完成分类的。

  在tensorflow中,卷积层的重要函数是:

  tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None),其中:

  1、input是输入量,shape是[batch, height, width, channels]。;

  2、filter是使用的卷积核;

  3、strides是步长,其格式[1,step,step,1],step指的是在图像卷积的每一维的步长;

  4、padding:string类型的量,只能是"SAME","VALID"其中之一,SAME表示卷积前后图像面积不变。

  2、池化层

  池化层用于在卷积层进行特征提取后,输出的特征图会被传递至池化层进行特征选择和信息过滤。

  常见的池化是最大池化,最大池化指的是取出这些被卷积后的数据的最大值,就是取出其最大特征。

  假设其池化窗口为2X2,步长为2。

  原图像为:

  

利用tensorflow构建卷积神经网络(CNN)


  池化后为:

  

利用tensorflow构建卷积神经网络(CNN)


  在tensorflow中,池化层的重要函数是:

  tf.nn.max_pool(value, ksize, strides, padding, data_format, name)

  1、value:池化层的输入,一般池化层接在卷积层后面,shape是[batch, height, width, channels]。

  2、ksize:池化窗口的大小,取一个四维向量,一般是[1, in_height, in_width, 1]。

  3、strides:和卷积类似,窗口在每一个维度上滑动的步长,也是[1, stride,stride, 1]。

  4、padding:和卷积类似,可以取’VALID’ 或者’SAME’。

  这是tensorboard中卷积层和池化层的连接结构:

  3、全连接层

  全连接层与普通神经网络的结构相同,如图所示:

  具体实现代码

  卷积层、池化层与全连接层实现代码

  def conv2d(x,W,step,pad): #用于进行卷积,x为输入值,w为卷积核

  return tf.nn.conv2d(x,W,strides = [1,step,step,1],padding = pad)

  def max_pool_2X2(x,step,pad): #用于池化,x为输入值,step为步数

  return tf.nn.max_pool(x,ksize = [1,2,2,1],strides= [1,step,step,1],padding = pad)

  def weight_variable(shape): #用于获得W

  initial = tf.truncated_normal(shape,stddev = 0.1) #从截断的正态分布中输出随机值

  return tf.Variable(initial)

  def bias_variable(shape): #获得bias

  initial = tf.constant(0.1,shape=shape) #生成普通值

  return tf.Variable(initial)

  def add_layer(inputs,in_size,out_size,n_layer,activation_function = None,keep_prob = 1):

  #用于添加全连接层

  layer_name = 'layer_%s'%n_layer

  with tf.name_scope(layer_name):

  with tf.name_scope("Weights"):

  Weights = tf.Variable(tf.truncated_normal([in_size,out_size],stddev = 0.1),name = "Weights")

  tf.summary.histogram(layer_name+"/weights",Weights)

  with tf.name_scope("biases"):

  biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name = "biases")

  tf.summary.histogram(layer_name+"/biases",biases)

  with tf.name_scope("Wx_plus_b"):

  Wx_plus_b = tf.matmul(inputs,Weights) + biases

  tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)

  if activation_function == None :

  outputs = Wx_plus_b

  else:

  outputs = activation_function(Wx_plus_b)

  print(activation_function)

  outputs = tf.nn.dropout(outputs,keep_prob)

  tf.summary.histogram(layer_name+"/outputs",outputs)

  return outputs

  def add_cnn_layer(inputs, in_z_dim, out_z_dim, n_layer, conv_step = 1, pool_step = 2, padding = "SAME"):

  #用于生成卷积层和池化层

  layer_name = 'layer_%s'%n_layer

  with tf.name_scope(layer_name):

  with tf.name_scope("Weights"):

  W_conv = weight_variable([5,5,in_z_dim,out_z_dim])

  with tf.name_scope("biases"):

  b_conv = bias_variable([out_z_dim])

  with tf.name_scope("conv"):

  #卷积层

  h_conv = tf.nn.relu(conv2d(inputs, W_conv, conv_step, padding)+b_conv)

  with tf.name_scope("pooling"):

  #池化层

  h_pool = max_pool_2X2(h_conv, pool_step, padding)

  return h_pool

  全部代码

  import tensorflow as tf

  from tensorflow.examples.tutorials.mnist import input_data

  mnist = input_data.read_data_sets("MNIST_data",one_hot = "true")

  def conv2d(x,W,step,pad):

  return tf.nn.conv2d(x,W,strides = [1,step,step,1],padding = pad)

  def max_pool_2X2(x,step,pad):

  return tf.nn.max_pool(x,ksize = [1,2,2,1],strides= [1,step,step,1],padding = pad)

  def weight_variable(shape):

  initial = tf.truncated_normal(shape,stddev = 0.1) #从截断的正态分布中输出随机值

  return tf.Variable(initial)

  def bias_variable(shape):

  initial = tf.constant(0.1,shape=shape) #生成普通值

  return tf.Variable(initial)无锡人流医院 http://www.0510bhyy.com/

  def add_layer(inputs,in_size,out_size,n_layer,activation_function = None,keep_prob = 1):

  layer_name = 'layer_%s'%n_layer

  with tf.name_scope(layer_name):

  with tf.name_scope("Weights"):

  Weights = tf.Variable(tf.truncated_normal([in_size,out_size],stddev = 0.1),name = "Weights")

  tf.summary.histogram(layer_name+"/weights",Weights)

  with tf.name_scope("biases"):

  biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name = "biases")

  tf.summary.histogram(layer_name+"/biases",biases)

  with tf.name_scope("Wx_plus_b"):

  Wx_plus_b = tf.matmul(inputs,Weights) + biases

  tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)

  if activation_function == None :

  outputs = Wx_plus_b

  else:

  outputs = activation_function(Wx_plus_b)

  print(activation_function)

  outputs = tf.nn.dropout(outputs,keep_prob)

  tf.summary.histogram(layer_name+"/outputs",outputs)

  return outputs

  def add_cnn_layer(inputs, in_z_dim, out_z_dim, n_layer, conv_step = 1, pool_step = 2, padding = "SAME"):

  layer_name = 'layer_%s'%n_layer

  with tf.name_scope(layer_name):

  with tf.name_scope("Weights"):

  W_conv = weight_variable([5,5,in_z_dim,out_z_dim])

  with tf.name_scope("biases"):

  b_conv = bias_variable([out_z_dim])

  with tf.name_scope("conv"):

  h_conv = tf.nn.relu(conv2d(inputs, W_conv, conv_step, padding)+b_conv)

  with tf.name_scope("pooling"):

  h_pool = max_pool_2X2(h_conv, pool_step, padding)

  return h_pool

  def compute_accuracy(x_data,y_data):

  global prediction

  y_pre = sess.run(prediction,feed_dict={xs:x_data,keep_prob:1})

  correct_prediction = tf.equal(tf.arg_max(y_data,1),tf.arg_max(y_pre,1))

  accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

  result = sess.run(accuracy,feed_dict = {xs:batch_xs,ys:batch_ys,keep_prob:1})

  return result

  keep_prob = tf.placeholder(tf.float32)

  xs = tf.placeholder(tf.float32,[None,784])

  ys = tf.placeholder(tf.float32,[None,10])

  x_image = tf.reshape(xs,[-1,28,28,1])

  h_pool1 = add_cnn_layer(x_image, in_z_dim = 1, out_z_dim = 32, n_layer = "cnn1",)

  h_pool2 = add_cnn_layer(h_pool1, in_z_dim = 32, out_z_dim = 64, n_layer = "cnn2",)

  h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])

  h_fc1_drop = add_layer(h_pool2_flat, 7*7*64, 1024, "layer1", activation_function = tf.nn.relu, keep_prob = keep_prob)

  prediction = add_layer(h_fc1_drop, 1024, 10, "layer2", activation_function = tf.nn.softmax, keep_prob = 1)

  with tf.name_scope("loss"):

  loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=ys,logits = prediction),name = 'loss')

  tf.summary.scalar("loss",loss)

  train = tf.train.AdamOptimizer(1e-4).minimize(loss)

  init = tf.initialize_all_variables()

  merged = tf.summary.merge_all()

  with tf.Session() as sess:

  sess.run(init)

  write = tf.summary.FileWriter("logs/",sess.graph)

  for i in range(5000):

  batch_xs,batch_ys = mnist.train.next_batch(100)

  sess.run(train,feed_dict = {xs:batch_xs,ys:batch_ys,keep_prob:0.5})

  if i % 100 == 0:

  print(compute_accuracy(mnist.test.images,mnist.test.labels))

推荐阅读:
  1. TensorFlow实现CNN的方法
  2. 利用Tensorflow怎么实现卷积神经网络

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

tensorflow 神经网络 cn

上一篇:php如何判断两个时间的时间差

下一篇:基于centos 7部署LNMP动静分离以及部署Discuz论坛

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》