使用golang怎么实现一个比特币交易功能

发布时间:2021-05-13 15:56:53 作者:Leah
来源:亿速云 阅读:140

使用golang怎么实现一个比特币交易功能?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

比特币交易

交易(transaction)是比特币的核心所在,而区块链唯一的目的,也正是为了能够安全可靠地存储交易。在区块链中,交易一旦被创建,就没有任何人能够再去修改或是删除它。
对于每一笔新的交易,它的输入会引用(reference)之前一笔交易的输出(这里有个例外,coinbase 交易),引用就是花费的意思。所谓引用之前的一个输出,也就是将之前的一个输出包含在另一笔交易的输入当中,就是花费之前的交易输出。交易的输出,就是币实际存储的地方。下面的图示阐释了交易之间的互相关联:

使用golang怎么实现一个比特币交易功能 

注意:

有一些输出并没有被关联到某个输入上

一笔交易的输入可以引用之前多笔交易的输出

一个输入必须引用一个输出

贯穿本文,我们将会使用像“钱(money)”,“币(coin)”,“花费(spend)”,“发送(send)”,“账户(account)” 等等这样的词。但是在比特币中,其实并不存在这样的概念。交易仅仅是通过一个脚本(script)来锁定(lock)一些值(value),而这些值只可以被锁定它们的人解锁(unlock)。

每一笔比特币交易都会创造输出,输出都会被区块链记录下来。给某个人发送比特币,实际上意味着创造新的 UTXO 并注册到那个人的地址,可以为他所用。
交易的主函数:

func (cli *CLI) send(from, to string, amount int, nodeID string, mineNow bool) {
    if !ValidateAddress(from) {   
        log.Panic("ERROR: Sender address is not valid")
    }
    if !ValidateAddress(to) {
        log.Panic("ERROR: Recipient address is not valid")
    }
    bc := NewBlockchain(nodeID)    //获取区块链实例
    UTXOSet := UTXOSet{bc}    //创建UTXO集
    defer bc.Db.Close()
    wallets, err := NewWallets(nodeID)
    if err != nil {
        log.Panic(err)
    }
    wallet := wallets.GetWallet(from)
    tx := NewUTXOTransaction(&wallet, to, amount, &UTXOSet)
    if mineNow {    
        cbTx := NewCoinbaseTX(from, "")
        txs := []*Transaction{cbTx, tx}
        newBlock := bc.MineBlock(txs)
        UTXOSet.Update(newBlock)
    } else {
        sendTx(knownNodes[0], tx)
    }

    fmt.Println("Success!")
}

我们从头分析整个交易过程,首先利用ValidateAddress()方法判断输入的地址是否为有效的比特币地址,然后从我们的blotDB数据库中获取blockchain实例(我们利用一个数据库实现区块链数据的存储,这里读者可以忽略),其中读取数据库的代码如下

func NewBlockchain(nodeID string) *Blockchain {
    dbFile := fmt.Sprintf(dbFile, nodeID)
    if dbExists(dbFile) == false {
        fmt.Println("No existing blockchain found. Create one first.")
        os.Exit(1)
    }
    var tip []byte
    db, err := bolt.Open(dbFile, 0600, nil)    //打开数据库
    if err != nil {
        log.Panic(err)
    }
    err = db.Update(func(tx *bolt.Tx) error {
        b := tx.Bucket([]byte(blocksBucket))
        tip = b.Get([]byte("l"))  //读取最新的区块链
        return nil
    })
    if err != nil {
        log.Panic(err)
    }
    bc := Blockchain{tip, db}
    return &bc
}

其中我们的区块链的基本原型为

type Blockchain struct {
    tip []byte
    Db  *bolt.DB
}
type Block struct {
    Timestamp     int64
    Transactions  []*Transaction
    PrevBlockHash []byte
    Hash          []byte
    Nonce         int
    Height        int
}

获取完成区块链实例后,我们创建出一个utxo集合,其数据结构为

type UTXOSet struct {
    Blockchain *Blockchain
}

然后我们从钱包文件中获取我们的钱包集合(wallets),接着调用我们的转账函数。

func NewUTXOTransaction(wallet *Wallet, to string, amount int, UTXOSet *UTXOSet) *Transaction {
    var inputs []TXInput
    var outputs []TXOutput
    pubKeyHash := HashPubKey(wallet.PublicKey)
    acc, validOutputs := UTXOSet.FindSpendableOutputs(pubKeyHash, amount)    //找到能够使用的输出
    if acc < amount {    //如果能够使用的输出小于目标值,则返回错误
        log.Panic("ERROR: Not enough funds")
    }
    // Build a list of inputs
    for txid, outs := range validOutputs {         
        txID, err := hex.DecodeString(txid)
        if err != nil {
            log.Panic(err)
        }
        for _, out := range outs {
            input := TXInput{txID, out, nil, wallet.PublicKey}
            inputs = append(inputs, input)
        }
    }
    // Build a list of outputs
    from := fmt.Sprintf("%s", wallet.GetAddress())
    outputs = append(outputs, *NewTXOutput(amount, to))    //创建新的交易输出
    if acc > amount {
        outputs = append(outputs, *NewTXOutput(acc-amount, from)) // a change    //找零输出
    }
    tx := Transaction{nil, inputs, outputs}
    tx.ID = tx.Hash()    //创建一笔交易
    UTXOSet.Blockchain.SignTransaction(&tx, wallet.PrivateKey)       //对交易签名
    return &tx
}

对于一笔交易来说,其数据结构为

type Transaction struct {
    ID   []byte
    Vin  []TXInput
    Vout []TXOutput
}
type TXInput struct {
    Txid      []byte
    Vout      int
    Signature []byte
    PubKey    []byte
}
type TXOutput struct {
    Value      int
    PubKeyHash []byte
}
type UTXOSet struct {
    Blockchain *Blockchain
}

一笔交易来说,输出主要包含两部分: 一定量的比特币(Value), 一个锁定脚本(ScriptPubKey),要花这笔钱,必须要解锁该脚本。一个输入引用了之前交易的一个输出:Txid 存储的是之前交易的 ID,Vout 存储的是该输出在那笔交易中所有输出的索引(因为一笔交易可能有多个输出,需要有信息指明是具体的哪一个)Signature是签名,而Pubkey是公钥,两者保证了用户无法花费属于其他人的币。

func HashPubKey(pubKey []byte) []byte {  // RIPEMD160(SHA256(PubKey))
    publicSHA256 := sha256.Sum256(pubKey)
    RIPEMD160Hasher := ripemd160.New()
    _, err := RIPEMD160Hasher.Write(publicSHA256[:])
    if err != nil {
        log.Panic(err)
    }
    publicRIPEMD160 := RIPEMD160Hasher.Sum(nil)
    return publicRIPEMD160
}
func (u UTXOSet) FindSpendableOutputs(pubkeyHash []byte, amount int) (int, map[string][]int) {
    unspentOutputs := make(map[string][]int)     //为输出开辟一块内存空间
    accumulated := 0       
    db := u.Blockchain.db             //获取存取区块链的数据库
    err := db.View(func(tx *bolt.Tx) error {               //读取数据库
        b := tx.Bucket([]byte(utxoBucket))
        c := b.Cursor()
        for k, v := c.First(); k != nil; k, v = c.Next() {               //遍历数据库
            txID := hex.EncodeToString(k)
            outs := DeserializeOutputs(v)
            for outIdx, out := range outs.Outputs {
                if out.IsLockedWithKey(pubkeyHash) && accumulated < amount {          //如果能够解锁输出,代表utxo集中的输出是的所有者是该公钥所对应的人
                    accumulated += out.Value     //累加值
                    unspentOutputs[txID] = append(unspentOutputs[txID], outIdx)     //加到数组中
                }
            }
        }

        return nil
    })
    if err != nil {
        log.Panic(err)
    }
    return accumulated, unspentOutputs
}
func (out *TXOutput) IsLockedWithKey(pubKeyHash []byte) bool {      //判断输出是否能够被某个公钥解锁
    return bytes.Compare(out.PubKeyHash, pubKeyHash) == 0
} 
func NewTXOutput(value int, address string) *TXOutput {
    txo := &TXOutput{value, nil}    //注册一个输出
    txo.Lock([]byte(address))    //设置输出的pubhashkey
    return txo
}
func (out *TXOutput) Lock(address []byte) {
    pubKeyHash := Base58Decode(address)
    pubKeyHash = pubKeyHash[1 : len(pubKeyHash)-4]
    out.PubKeyHash = pubKeyHash
}

在创建新的输出时,我们必须找到所有的为花费的输出,并且确保他们有足够的价值(value),这就是FindSpendableOutputs 要做的事情,随后,对于每个找到的输出,会创建一个引用该输出的输入。接下来,我们创建两个输出:

  1. 一个由接收者地址锁定。这是给其他地址实际转移的币。

  2. 一个由发送者地址锁定。这是一个找零。只有当未花费输出超过新交易所需时产生。记住:输出是不可再分的。

func (bc *Blockchain) SignTransaction(tx *Transaction, privKey ecdsa.PrivateKey) {
    prevTXs := make(map[string]Transaction)
    for _, vin := range tx.Vin {
        prevTX, err := bc.FindTransaction(vin.Txid)
        if err != nil {
            log.Panic(err)
        }
        prevTXs[hex.EncodeToString(prevTX.ID)] = prevTX
    }
    tx.Sign(privKey, prevTXs)
}
func (tx *Transaction) Sign(privKey ecdsa.PrivateKey, prevTXs map[string]Transaction) {//方法接受一个私钥和之前一个交易的map
    if tx.IsCoinbase() {
        return
    }//判断是是否为发币交易,因为发币交易没有输入,故不用进行签名

    for _, vin := range tx.Vin {
        if prevTXs[hex.EncodeToString(vin.Txid)].ID == nil {
            log.Panic("ERROR: Previous transaction is not correct")
        }
    }

    txCopy := tx.TrimmedCopy()  //将会被签名的是修剪后的交易副本,而不是一个完整的交易

    for inID, vin := range txCopy.Vin {
        prevTx := prevTXs[hex.EncodeToString(vin.Txid)]
        txCopy.Vin[inID].Signature = nil
        txCopy.Vin[inID].PubKey = prevTx.Vout[vin.Vout].PubKeyHash
//迭代副本中的每一个输入,在每个输入中,Pubkey 被设置为所引用输出的PubKeyHash
/
        dataToSign := fmt.Sprintf("%x\n", txCopy)
        r, s, err := ecdsa.Sign(rand.Reader, &privKey, []byte(dataToSign))//我们通过private对txCopy进行签名将这串数字连接起来储存在signature中
        if err != nil {
            log.Panic(err)
        }
        signature := append(r.Bytes(), s.Bytes()...)
        tx.Vin[inID].Signature = signature
        txCopy.Vin[inID].PubKey = nil
    }
}


func (tx *Transaction) TrimmedCopy() Transaction {  
    var inputs []TXInput
    var outputs []TXOutput

    for _, vin := range tx.Vin {//将输入的TXInput.Signature 和TXIput.PubKey设置为空
        inputs = append(inputs, TXInput{vin.Txid, vin.Vout, nil, nil})
    }

    for _, vout := range tx.Vout {
        outputs = append(outputs, TXOutput{vout.Value, vout.PubKeyHash})
    }
    txCopy := Transaction{tx.ID, inputs, outputs}
    return txCopy
}

交易必须被签名,因为这是保证发送方不会花费其他人的币的唯一方式,如果一个签名是无效的,那么这笔交易也会被认为是无效的,因为这笔交易无法被加到区块链中。考虑到交易解锁的是之前的输出,然后重新分配里面的价值,并锁定新的输出,那么必须要签名一下的数据

因此,在比特币里,所签名的并不是一个交易,而是一个去除部分签名的输入的副本,输入里面存储了被引用输出的ScriptPubKey

如果现在进行过挖矿

   cbTx := NewCoinbaseTX(from, "")
        txs := []*Transaction{cbTx, tx}
        newBlock := bc.MineBlock(txs)
        UTXOSet.Update(newBlock)



func NewCoinbaseTX(to, data string) *Transaction {
    if data == "" {  //如果数据为空生成一个随机数据
        randData := make([]byte, 20)
        _, err := rand.Read(randData)
        if err != nil {
            log.Panic(err)
        }
        data = fmt.Sprintf("%x", randData)
    }//生成一笔挖矿交易
    txin := TXInput{[]byte{}, -1, nil, []byte(data)}
    txout := NewTXOutput(subsidy, to)
    tx := Transaction{nil, []TXInput{txin}, []TXOutput{*txout}}
    tx.ID = tx.Hash()
    return &tx
}

func (bc *Blockchain) MineBlock(transactions []*Transaction) *Block {   //开始挖矿
    var lastHash []byte
    var lastHeight int
    for _, tx := range transactions {
        // TODO: ignore transaction if it's not valid
        if bc.VerifyTransaction(tx) != true {
            log.Panic("ERROR: Invalid transaction")   //对打包在区块中的交易进行认证
        }
    }

    err := bc.db.View(func(tx *bolt.Tx) error {
        b := tx.Bucket([]byte(blocksBucket))
        lastHash = b.Get([]byte("l"))   //获取最新的一个块的hash值
        blockData := b.Get(lastHash)
        block := DeserializeBlock(blockData)  //将最新的一个块解序列
        lastHeight = block.Height
        return nil
    })
    if err != nil {
        log.Panic(err)
    }
    newBlock := NewBlock(transactions, lastHash, lastHeight+1)
    err = bc.db.Update(func(tx *bolt.Tx) error {    //更新区块链数据库
        b := tx.Bucket([]byte(blocksBucket))
        err := b.Put(newBlock.Hash, newBlock.Serialize())
        if err != nil {
            log.Panic(err)
        }
        err = b.Put([]byte("l"), newBlock.Hash)
        if err != nil {
            log.Panic(err)
        }
        bc.tip = newBlock.Hash
        return nil
    })
    if err != nil {
        log.Panic(err)
    }
    return newBlock
}
func (bc *Blockchain) VerifyTransaction(tx *Transaction) bool {
    if tx.IsCoinbase() {
        return true
    }
    prevTXs := make(map[string]Transaction)
    for _, vin := range tx.Vin {
        prevTX, err := bc.FindTransaction(vin.Txid)
        if err != nil {
            log.Panic(err)
        }
        prevTXs[hex.EncodeToString(prevTX.ID)] = prevTX
    }
    return tx.Verify(prevTXs)
}
func (tx *Transaction) Verify(prevTXs map[string]Transaction) bool {
    if tx.IsCoinbase() {   //判断是否为大笔交易
        return true
    }
    for _, vin := range tx.Vin {
        if prevTXs[hex.EncodeToString(vin.Txid)].ID == nil {
            log.Panic("ERROR: Previous transaction is not correct")   //判断输入地址的有效性
        }
    }
    txCopy := tx.TrimmedCopy()    //创建一个裁剪版本的交易副本
    curve := elliptic.P256()    //我们需要相同区块用于生成密钥对
    for inID, vin := range tx.Vin {
        prevTx := prevTXs[hex.EncodeToString(vin.Txid)]
        txCopy.Vin[inID].Signature = nil
        txCopy.Vin[inID].PubKey = prevTx.Vout[vin.Vout].PubKeyHash
        r := big.Int{}
        s := big.Int{}
        sigLen := len(vin.Signature)
        r.SetBytes(vin.Signature[:(sigLen / 2)])
        s.SetBytes(vin.Signature[(sigLen / 2):])
        x := big.Int{}
        y := big.Int{}
        keyLen := len(vin.PubKey)
        x.SetBytes(vin.PubKey[:(keyLen / 2)])
        y.SetBytes(vin.PubKey[(keyLen / 2):])
//这里我们解包存储在 TXInput.Signature 和 TXInput.PubKey 中的值,因为一个签名就是一对数字,一个公钥就是一对坐标。我们之前为了存储将它们连接在一起,现在我们需要对它们进行解包在 crypto/ecdsa 函数中使用
        dataToVerify := fmt.Sprintf("%x\n", txCopy)
        rawPubKey := ecdsa.PublicKey{curve, &x, &y}
        if ecdsa.Verify(&rawPubKey, []byte(dataToVerify), &r, &s) == false {  //验证
            return false
        }
        txCopy.Vin[inID].PubKey = nil
    }

    return true
}
func NewBlock(transactions []*Transaction, prevBlockHash []byte, height int) *Block {//产生一个新的块
    block := &Block{time.Now().Unix(), transactions, prevBlockHash, []byte{}, 0, height}//定义数据结构
    pow := NewProofOfWork(block)    //定义工作量证明的数据结构
    nonce, hash := pow.Run()    //挖矿
    block.Hash = hash[:]
    block.Nonce = nonce
    return block
}
func (pow *ProofOfWork) Run() (int, []byte) {
    var hashInt big.Int
    var hash [32]byte
    nonce := 0
    fmt.Printf("Mining a new block")
    for nonce < maxNonce {
        data := pow.prepareData(nonce)
        hash = sha256.Sum256(data)
        fmt.Printf("\r%x", hash)
        hashInt.SetBytes(hash[:])
        if hashInt.Cmp(pow.target) == -1 {
            break
        } else {
            nonce++
        }
    }
    fmt.Print("\n\n")

    return nonce, hash[:]
}
func (pow *ProofOfWork) prepareData(nonce int) []byte {
    data := bytes.Join(
        [][]byte{
            pow.block.PrevBlockHash,
            pow.block.HashTransactions(),
            IntToHex(pow.block.Timestamp),
            IntToHex(int64(targetBits)),
            IntToHex(int64(nonce)),
        },
        []byte{},
    )

    return data
}
func (u UTXOSet) Update(block *Block) {
    db := u.Blockchain.db
    err := db.Update(func(tx *bolt.Tx) error {
        b := tx.Bucket([]byte(utxoBucket))
        for _, tx := range block.Transactions {
            if tx.IsCoinbase() == false {
                for _, vin := range tx.Vin {
                    updatedOuts := TXOutputs{}
                    outsBytes := b.Get(vin.Txid)
                    outs := DeserializeOutputs(outsBytes)

                    for outIdx, out := range outs.Outputs {
                        if outIdx != vin.Vout {
                            updatedOuts.Outputs = append(updatedOuts.Outputs, out)
                        }
                    }

                    if len(updatedOuts.Outputs) == 0 {
                        err := b.Delete(vin.Txid)
                        if err != nil {
                            log.Panic(err)
                        }
                    } else {
                        err := b.Put(vin.Txid, updatedOuts.Serialize())
                        if err != nil {
                            log.Panic(err)
                        }
                    }

                }
            }
            newOutputs := TXOutputs{}
            for _, out := range tx.Vout {
                newOutputs.Outputs = append(newOutputs.Outputs, out)
            }
            err := b.Put(tx.ID, newOutputs.Serialize())
            if err != nil {
                log.Panic(err)
            }
        }

        return nil
    })
    if err != nil {
        log.Panic(err)
    }
}

golang适合做什么

golang可以做服务器端开发,但golang很适合做日志处理、数据打包、虚拟机处理、数据库代理等工作。在网络编程方面,它还广泛应用于web应用、API应用等领域。

关于使用golang怎么实现一个比特币交易功能问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注亿速云行业资讯频道了解更多相关知识。

推荐阅读:
  1. golang[47]-区块链-比特币交易
  2. golang如何实现比特币默克尔树

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

golang

上一篇:如何在Python中使用Blending算法

下一篇:怎么在vue中利用Moment格式化时间

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》