Linux的tty架构及UART驱动知识点有哪些

发布时间:2021-11-23 15:02:13 作者:iii
来源:亿速云 阅读:172

这篇文章主要讲解了“Linux的tty架构及UART驱动知识点有哪些”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Linux的tty架构及UART驱动知识点有哪些”吧!

一、模块硬件学习

1.1. Uart介绍

通用异步收发传输器(Universal Asynchronous  Receiver/Transmitter),通常称为UART,是一种异步收发传输器,是电脑硬件的一部分。它将要传输的资料在串行通信与并行通信之间加以转换。

作为把并行输入信号转成串行输出信号的芯片,UART 通常被集成于其他通讯接口的连上。

UART 是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输和接收。在嵌入式设备中,UART  用于主机与辅助设备通信,如汽车音与外接AP 之间的通信,与PC 机通信包括与监控调试器和其它器件,如EEPOM通信。

1.1.1. 通信协议

UART作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一位接一位地传输。其中各位的意义如下:

由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。

Uart传输数据如图2-1所示:

Linux的tty架构及UART驱动知识点有哪些

1.1.2. 波特率

波特率是衡量资料传送速率的指标。表示每秒钟传送的符号数(symbol)。一个符号代表的信息量(比特数)与符号的阶数有关。例如传输使用256阶符号,每8bit代表一个符号,数据传送速率为120字符/秒,则波特率就是120  baud,比特率是120*8=960bit/s。这两者的概念很容易搞错。

UART  的接收和发送是按照相同的波特率进行收发的。波特率发生器产生的时钟频率不是波特率时钟频率,而是波特率时钟频率的16倍,目的是为在接收时进行精确的采样,以提取出异步的串行数据。根据给定的晶振时钟和要求的波特率,可以算出波特率分频计数值。

1.1.3. 工作原理

发送数据过程:空闲状态,线路处于高电位;当收到发送数据指令后,拉低线路一个数据位的时间T,接着数据位按低位到高位依次发送,数据发送完毕后,接着发送奇偶检验位和停止位(停止位为高电位),一帧数据发送结束。

接收数据过程:  空闲状态,线路处于高电位;当检测到线路的下降沿(线路电位由高电位变为低电位)时说明线路有数据传输,按照约定的波特率从低位到高位接收数据,数据接收完毕后,接着接收并比较奇偶检验位是否正确,如果正确则通知则通知后续设备准备接收数据或存入缓存。

由于UART是异步传输,没有传输同步时钟。为了能保证数据传输的正确性,UART采用16倍数据波特率的时钟进行采样。每个数据有16个时钟采样,取中间的采样值,以保证采样不会滑码或误码。

一般UART一帧的数据位为8,这样即使每一个数据有一个时钟的误差,接收端也能正确地采样到数据。

UART的接收数据时序为:当检测到数据下降沿时,表明线路上有数据进行传输,这时计数器CNT开始计数,当计数器,当计数器为8时,采样的值为“0”表示开始位;当计数器为24=161+8时,采样的值为bit0数据;当计数器的值为40=162+8时,采样的值为bit1数据;依次类推,进行后面6个数据的采样。如果需要进行奇偶校验位,则当计数器的值为152=169+8时,采样的值为奇偶位;当计数器的值为168=1610+8时,采样的值为“1”表示停止位,一帧数据收发完成。

1.1.4. RS232与RS485

UART:通常说的UART指的是一种串行通信协议,规定了数据帧格式,波特率等。

RS232和RS485:是两种不同的电气协议,也就是说,是对电气特性以及物理特性的规定,作用于数据的传输通路上,它并不含对数据的处理方式。

对应的物理器件有RS232或者RS485驱动芯片,将CPU经过UART传送过来的电压信号驱动成RS232或者RS485电平逻辑。

RS232使用3-15V有效电平,而UART,因为对电气特性没有规定,所以直接使用CPU使用的电平,即TTL电平(在0-3.3V之间)。

更具体的,电气的特性也决定了线路的连接方式,比如RS232,规定用电平表示数据,因此线路就是单线路的,两根线能达到全双工的目的;RS485使用差分电平表示数据,因此必须用两根线才能达到传输数据的基本要求,要实现全双工,必须使用4根线。

RS232和RS485的区别(1)抗干扰性

1.1.5. 流控

数据在两个串口传输时,常常会出现丢失数据的现象,或者两台计算机的处理速度不同,如台式机与单片机之间的通讯,接收端数据缓冲区以满,此时继续发送的数据就会丢失,流控制能解决这个问题,当接收端数据处理不过来时,就发出“不再接收”的信号,发送端就停止发送,直到收到“可以继续发送”的信号再发送数据。

因此流控制可以控制数据传输的进程,防止数据丢失。PC机中常用的两种流控为:硬件流控(包括RTS/CTS、DTR/CTS等)和软件流控制XON/XOFF(继续/停止)。

Linux的tty架构及UART驱动知识点有哪些

硬件流控制常用的有RTS/CTS流控制和DTR/DSR流控制两种。

DTR–数据终端就绪(Data Terminal  Ready)低有效,当为低时,表示本设备自身准备就绪。此信号输出对端设备,使用对端设备决定能否与本设备通信。

DSR-数据装置就绪(Data Set Ready)低有效,此信号由本设备相连接的对端设备提供,当为低时,本设备才能与设备端进行通信。

RTS - 请求发送(数据)(Request To  Send)低有效,此信号由本设备在需要发送数据给对端设备时设置。当为低时,表示本设备有数据需要向对端设备发送。对端设备能否接收到本方的发送数据,则通过CTS信号来应答。

CTS - 接收发送(请求)(Clear To  Send)低有效,对端设备能否接收本方所发送的数据,由CTS决定。若CTS为低,则表示对端的以准备好,可以接收本端发送数据。

以RTS/CTS流控制分析,分析主机发送/接收流程:

物理连接

Linux的tty架构及UART驱动知识点有哪些

主机的RTS(输出信号),连接到从机的CTS(输入信号)。主机是CTS(输入信号),连接到从机的RTS(输入信号)。

Linux的tty架构及UART驱动知识点有哪些

由于电缆的限制,在普通的控制通讯中一般不采用硬件流控制,而是使用软件流控制。

一般通过XON/XOFF来实现软件流控制。常用方法是:当接收端的输入缓冲区内数据量超过设定的高位时,就向数据发送端发送XOFF字符后就立即停止发送数据。

当接收端的输入缓冲区内数据量低于设定的低位时,就向数据发送端发送XON字符(十进制的17或Control-Q),发送端收到XON字符后就立即开始发送数据。

一般可从设备配套源程序中找到发送端收到XON字符后就立即发送数据。一般可以从设备配套源程序中找到发送的是什么字节。

应注意,若传输的是二进制的数据,标志字符也可能在数据流中出现而引起误操作,这是软件流控的缺陷,而硬件流控不会出现这样的问题。

二、Linux serial框架

在Linux系统中,终端是一种字符型设备,它有多种类型,通常使用tty(Teletype)来简称各种类型的终端设备。

对于嵌入式系统而言,最普遍采用的是Uart(Universal Asynchronous  Receiver/Transmitter),串行端口,日常生活中简称端口

2.1. TTY驱动程序框架

2.1.1. TTY概念

Linux的tty架构及UART驱动知识点有哪些

串口终端是使用计算机串口连接的终端设备。Linux把每个串行端口都看做是一个字符设备。这些串行端口所对应的设备名称是/dev/ttySAC*;

Linux的tty架构及UART驱动知识点有哪些

在Linux系统中,计算机的输出设备通常被称为控制台终端,这里特指printk信息输出到设备。/dev/console是一个虚拟的设备,它需要映射到真正的tty上,比如通过内核启动参数“console=ttySCA0”就把console映射到了串口0

Linux的tty架构及UART驱动知识点有哪些

当用户登录时,使用的是虚拟终端。使用Ctcl+Alt[F1 -  F6]组合键时,我们就可以切换到tty1、tty2、tty3等上面去。tty*就称为虚拟终端,而tty0则是当前所使用虚拟终端的一个别名。

2.1.2. TTY架构分析

整个 tty架构大概的样子如图3.1所示,简单来分的话可以说成两层,一层是下层我们的串口驱动层,它直接与硬件相接触,我们需要填充一个 struct  uart_ops 的结构体,另一层是上层 tty 层,包括 tty 核心以及线路规程,它们各自都有一个 Ops 结构,用户空通过间是 tty  注册的字符设备节点来访问。

Linux的tty架构及UART驱动知识点有哪些

图3.1tty架构图

如图3.2所示,tty设备发送数据的流程为:tty核心从一个用户获取将要发送给一个tty设备的数据,tty核心将数据传递给tty线路规程驱动,接着数据被传到tty驱动,tty驱动将数据转换为可以发给硬件的格式。

接收数据的流程为:从tty硬件接收到的数据向上交给tty驱动,接着进入tty线路规程驱动,再进入tty核心,在这里它被一个用户获取。

Linux的tty架构及UART驱动知识点有哪些

图3.2 tty设备发送、接收数据流程

2.2. 关键数据结构

2.2.1. Struct uart_driver

uart_driver 包含了串口设备名,串口驱动名,主次设备号,串口控制台(可选))等信息,还封装了tty_driver  (底层串口驱动无需关心tty_driver)

struct uart_driver {         struct module    *owner; /*拥有该uart_driver的模块,一般为THIS_MODULE*/         const char        *driver_name; /*驱动串口名,串口设备名以驱动名为基础*/         const char        *dev_name; /*串口设备名*/         int                 major; /*主设备号*/         int                 minor; /*次设备号*/         int                 nr; /*该uart_driver支持的串口数*/         struct console    *cons; /*其对应的console,若该uart_driver支持serial console, *否则为NULL*/ /* * these are private; the low level driver should not * touch these; they should be initialised to NULL */ struct uart_state *state; /*下层,窗口驱动层*/ struct tty_driver  *tty_driver; /*tty相关*/

2.2.2. struct console

实现控制台打印功能必须要注册的结构体

struct console {       char name[16];       void(*write)(struct console *,const char *, unsigined);       int (*read)(struct console *, char *, unsigned);       struct tty_driver *(struct console *,int*);       void (*unblank)(void);       int  (*setup)(struct console *, char *);       int  (*early_setup)(void);       short  flags;       short  index; /*用来指定该console使用哪一个uart port (对应的uart_port中的line),如果为-1,kernel会自动选择第一个uart port*/       int   cflag;       void  *data;       struct   console *next; };

2.2.3. struct uart_state

每一个uart端口对应着一个uart_state,该结构体将uart_port与对应的circ_buf联系起来。uart_state有两个成员在底层串口驱动会用到:xmit和port。

用户空间程序通过串口发送数据时,上层驱动将用户数据保存在xmit;而串口发送中断处理函数就是通过xmit获取到用户数据并将它们发送出去。串口接收中断处理函数需要通过port将接收到的数据传递给线路规程层。

struct uart_state {        struct  tty_port  port;                enum uart_pm_state   pm_state;        struct circ_buf     xmit;                struct uart_port     *uart_port; /*对应于一个串口设备*/ };

2.2.4. struct uart_port

uart_port用于描述串口端口的I/O端口或I/O内存地址、FIFO大小、端口类型、串口时钟等信息。实际上,一个uart_port实现对应一个串口设备。

struct uart_port {         spinlock_t              lock;                   /* port lock */         unsigned long           iobase;                 /* in/out[bwl] */         unsigned char __iomem   *membase;               /* read/write[bwl] */         unsigned int            (*serial_in)(struct uart_port *, int);         void                    (*serial_out)(struct uart_port *, int, int);         void                    (*set_termios)(struct uart_port *,                                                struct ktermios *new,                                                struct ktermios *old);         int                     (*handle_irq)(struct uart_port *);         void                    (*pm)(struct uart_port *, unsigned int state,                                       unsigned int old);         void                    (*handle_break)(struct uart_port *);         unsigned int            irq;                    /* irq number */         unsigned long           irqflags;               /* irq flags  */         unsigned int            uartclk;                /* base uart clock */         unsigned int            fifosize;               /* tx fifo size */         unsigned char           x_char;                 /* xon/xoff char */         unsigned char           regshift;               /* reg offset shift */         unsigned char           iotype;                 /* io access style */         unsigned char           unused1;  #define UPIO_PORT               (0) #define UPIO_HUB6               (1) #define UPIO_MEM                (2) #define UPIO_MEM32              (3) #define UPIO_AU                 (4)                     /* Au1x00 and RT288x type IO */ #define UPIO_TSI                (5)                     /* Tsi108/109 type IO */          unsigned int            read_status_mask;       /* driver specific */         unsigned int            ignore_status_mask;     /* driver specific */         struct uart_state       *state;                 /* pointer to parent state */         struct uart_icount      icount;                 /* statistics */          struct console          *cons;                  /* struct console, if any */ #if defined(CONFIG_SERIAL_CORE_CONSOLE) || defined(SUPPORT_SYSRQ)         unsigned long           sysrq;                  /* sysrq timeout */ #endif          upf_t                   flags;  #define UPF_FOURPORT            ((__force upf_t) (1 << 1)) #define UPF_SAK                 ((__force upf_t) (1 << 2)) #define UPF_SPD_MASK            ((__force upf_t) (0x1030)) #define UPF_SPD_HI              ((__force upf_t) (0x0010)) #define UPF_SPD_VHI             ((__force upf_t) (0x0020)) #define UPF_SPD_CUST            ((__force upf_t) (0x0030)) #define UPF_SPD_SHI             ((__force upf_t) (0x1000)) #define UPF_SPD_WARP            ((__force upf_t) (0x1010)) #define UPF_SKIP_TEST           ((__force upf_t) (1 << 6)) #define UPF_AUTO_IRQ            ((__force upf_t) (1 << 7)) #define UPF_HARDPPS_CD          ((__force upf_t) (1 << 11)) #define UPF_LOW_LATENCY         ((__force upf_t) (1 << 13)) #define UPF_BUGGY_UART          ((__force upf_t) (1 << 14)) #define UPF_NO_TXEN_TEST        ((__force upf_t) (1 << 15)) #define UPF_MAGIC_MULTIPLIER    ((__force upf_t) (1 << 16)) /* Port has hardware-assisted h/w flow control (iow, auto-RTS *not* auto-CTS) */ #define UPF_HARD_FLOW           ((__force upf_t) (1 << 21)) /* Port has hardware-assisted s/w flow control */ #define UPF_SOFT_FLOW           ((__force upf_t) (1 << 22)) #define UPF_CONS_FLOW           ((__force upf_t) (1 << 23)) #define UPF_SHARE_IRQ           ((__force upf_t) (1 << 24)) #define UPF_EXAR_EFR            ((__force upf_t) (1 << 25)) #define UPF_BUG_THRE            ((__force upf_t) (1 << 26)) /* The exact UART type is known and should not be probed.  */ #define UPF_FIXED_TYPE          ((__force upf_t) (1 << 27)) #define UPF_BOOT_AUTOCONF       ((__force upf_t) (1 << 28)) #define UPF_FIXED_PORT          ((__force upf_t) (1 << 29)) #define UPF_DEAD                ((__force upf_t) (1 << 30)) #define UPF_IOREMAP             ((__force upf_t) (1 << 31))  #define UPF_CHANGE_MASK         ((__force upf_t) (0x17fff)) #define UPF_USR_MASK            ((__force upf_t) (UPF_SPD_MASK|UPF_LOW_LATENCY))          unsigned int            mctrl;                  /* current modem ctrl settings */         unsigned int            timeout;                /* character-based timeout */         unsigned int            type;                   /* port type */         const struct uart_ops   *ops;         unsigned int            custom_divisor;         unsigned int            line;                   /* port index */         resource_size_t         mapbase;                /* for ioremap */         struct device           *dev;                   /* parent device */         unsigned char           hub6;                   /* this should be in the 8250 driver */         unsigned char           suspended;         unsigned char           irq_wake;         unsigned char           unused[2];         void                    *private_data;          /* generic platform data pointer */ };

2.2.5. struct uart_ops

struct uart_ops涵盖了驱动可对串口的所有操作

 struct uart_ops {         unsigned int    (*tx_empty)(struct uart_port *);         void            (*set_mctrl)(struct uart_port *, unsigned int mctrl);         unsigned int    (*get_mctrl)(struct uart_port *);         void            (*stop_tx)(struct uart_port *);         void            (*start_tx)(struct uart_port *);         void            (*throttle)(struct uart_port *);         void            (*unthrottle)(struct uart_port *);         void            (*send_xchar)(struct uart_port *, char ch);         void            (*stop_rx)(struct uart_port *);         void            (*enable_ms)(struct uart_port *);         void            (*break_ctl)(struct uart_port *, int ctl);         int             (*startup)(struct uart_port *);         void            (*shutdown)(struct uart_port *);         void            (*flush_buffer)(struct uart_port *);         void            (*set_termios)(struct uart_port *, struct ktermios *new,                                        struct ktermios *old);         void            (*set_ldisc)(struct uart_port *, int new);         void            (*pm)(struct uart_port *, unsigned int state,                               unsigned int oldstate);         int             (*set_wake)(struct uart_port *, unsigned int state);          /*          * Return a string describing the type of the port          */         const char      *(*type)(struct uart_port *);          /*          * Release IO and memory resources used by the port.          * This includes iounmap if necessary.          */         void            (*release_port)(struct uart_port *);          /*          * Request IO and memory resources used by the port.          * This includes iomapping the port if necessary.          */         int             (*request_port)(struct uart_port *);         void            (*config_port)(struct uart_port *, int);         int             (*verify_port)(struct uart_port *, struct serial_struct *);         int             (*ioctl)(struct uart_port *, unsigned int, unsigned long); #ifdef CONFIG_CONSOLE_POLL         int             (*poll_init)(struct uart_port *);         void            (*poll_put_char)(struct uart_port *, unsigned char);         int             (*poll_get_char)(struct uart_port *); #endif };

2.3. 关键流程

2.3.1. 注册流程

Linux的tty架构及UART驱动知识点有哪些

此接口在uart driver中调用,用来注册uart_driver到kernel中,调用阶段在uart  driver的初始阶段,例如:module_init(), uart_driver的注册流程图

Linux的tty架构及UART驱动知识点有哪些

图3.3uart driver注册流程

注册过程主要做了以下操作:

1、根据driver支持的最大设备数,申请n个uart_state空间,每一个uart_state都有一个uart_port。

2、分配一个tty_driver,并将uart_driver->tty_driver指向它。

3、对tty_driver进行设置,其中包括默认波特率、检验方式等,还有一个重要的ops,结构体tty_operation的注册,它是tty核心与串口驱动通信的接口。

4、初始化每一个uart_state的tty_port;

5、注册tty_driver。注册uart_driver实际上是注册tty_driver,与用户空间打交道的工作完全交给tty_driver,这一部分是内核实现好的不需要修改

Linux的tty架构及UART驱动知识点有哪些

此接口用于注册一个uart port 到uart driver上,通过注册,uart  driver就可以访问对应的uart port,进行数据收发。该接口在uart  driver中的probe函数调用,必须保证晚于uart_register_drver的注册过程。

uart  driver在调用接口前,要手动设置uart_port的操作uart_ops,使得通过调用uart_add_one_port接口后驱动完成硬件的操作接口注册。uart添加port流程如图3-4所示:

Linux的tty架构及UART驱动知识点有哪些

图3-4 uart添加port流程图

2.4. 数据收发流程

2.4.1. 打开设备(open操作)

open设备的大体流程如图3-5所示:

Linux的tty架构及UART驱动知识点有哪些

图3-5 open设备流程

2.4.2. 数据发送流程(write操作)

发送数据大体流程如图3-6所示:

Linux的tty架构及UART驱动知识点有哪些

图3-6 发送数据流程

2.4.3. 数据接收流程(read操作)

接收数据的大体流程如图3-7所示:

Linux的tty架构及UART驱动知识点有哪些

图3-7数据接收流程

2.4.4. 关闭设备(close操作)

close设备的大体流程如图3-8所示:

Linux的tty架构及UART驱动知识点有哪些

图3-8 close设备流程

2.4.5. 注销流程

Linux的tty架构及UART驱动知识点有哪些

此接口用于从uart driver上注销一个uart port,该接口在uart  driver中的remove函数中调用。uart移除port的流程如图3-9所示:

Linux的tty架构及UART驱动知识点有哪些

图3.9  uart移除port流程图

Linux的tty架构及UART驱动知识点有哪些

此接口在uart  driver中调用,用来从kernel中注销uart_driver,调用阶段在uart driver的退出阶段,例如:module_exit(),uart  driver的注销流程如图3.10所示

Linux的tty架构及UART驱动知识点有哪些

2.5. 使用rs485通信

2.5.1. rs485和rs232的区别

uart(TTL-3.3V)/rs232(工业级 +-12V)是电压驱动,rs485是电流驱动(能传输更远的距离)  rS232用电平表示数据,使用2根线可实现全双工,rs485用差分电平表示数据,因此必须用4根线实现全双工rs485;

全双工:uart-tx 1根线变成rs485-A/B 2根线;uart-rx 1根线变成rs485- X/Y两根线;

rs485半双工: 将全双工的A/B和X/Y合并起来分时复用;rs485-de/re是给转换器的一个控制信号,对我们芯片来说,都是输出;

2.5.2. rs485调试方法:

首先保证uart模块和相关gpio,电压转换芯片工作正常:

模式12-gpio-normal-uart-rs485-halfduplex (2个gpio独立控制de/re,  enable就是将相关gpio设置到active电平;不用uart控制器的rs485模式;uart控制器处于normal模式)

模式21-gpio-normal-uart-rs485-halfduplex 这个模式的前提条件,外设器件的  de/re必须是相反极性的,比如de是高电平有效,re是低电平有效,则可以用一个gpio,来控制  de/re,此时de/re一定是互斥的。(1个gpio控制de/re,  enable就是将相关gpio设置到active电平;不用uart控制器的rs485模式;uart控制器处于normal模式)

模式3rs485-software-halfduplex(de/re 独立输出) (使能uart控制器的rs485模式; 通过uart模块内部reg来控制  de/re 信号)

模式4rs485-hardware-halfduplex(de/re 独立输出) 基本配置同模式3,但是设置 rs485模式为  hardware-halfduplex模式

模式5:使用纯硬件的办法实现RS485半双工功能,电路如图所示:

Linux的tty架构及UART驱动知识点有哪些

接收:默认没有数据时,UART_TX为高电平,三极管导通,485芯片RE低电平使能,RO接收数据使能,此时从485AB口收到什么数据就会通过RO通道传到MCU,完成数据接收过程。发送:当发送数据时,UART_TX会有一个下拉的电平,表示开始发送数据,此时三极管截止,DE为高电平发送使能。当发送数据&lsquo;0&rsquo;时,由于DI口连接地,此时数据&lsquo;0&rsquo;就会传输到AB口  A-B<0,传输&lsquo;0&rsquo;,完成了低电平的传输。当发送&lsquo;1&rsquo;时,此时三极管导通,按理说RO使能,此时由于还处在发送数据中,这种状态下485处于高阻态,此时的状态通过A上拉B下拉电阻决定,此时A-B>0传输&lsquo;1&rsquo;,完成高电平的传输。

3. 模块详细设计

3.1. 关键函数接口

3.1.1. uart_register_driver

/*功能:  uart_register_driver用于串口驱动uart_driver注册到内核(串口核心层)中,通常在模块初始化函数调用该函数。  *参数:drv:要注册的uart_driver  *返回值:成功,返回0;否则返回错误码  */ int uart_register_driver(struct uart_driver *drv)

3.1.2. uart_unregister_driver

/*功能:uart_unregister 用于注销我们已注册的uart_driver,通常在模块卸载函数调用该函数,  *参数 : drv:要注销的uart_driver  *返回值:成功返回0,否则返回错误码  */ void uart_unregister_driver(struct uart_driver *drv)

3.1.3. uart_add_one_port

/*功能:uart_add_one_port用于为串口驱动添加一个串口端口,通常在探测到设备后(驱动的设备probe方法)调用该函数  *参数:  *     drv:串口驱动  *     port:要添加的串口端口  *返回值:成功,返回0;否则返回错误码  */ int uart_add_one_port(struct uart_driver *drv,struct uart_port *port)

3.1.4. uart_remove_one_port

/*功能:uart_remove_one_port用于删除一个已经添加到串口驱动中的串口端口,通常在驱动卸载时调用该函数  *参数:  *     drv:串口驱动  *     port:要删除的串口端口  *返回值:成功,返回0;否则返回错误码  */ int uart_remove_one_port(struct uart_driver *drv,struct uart_port *port)

3.1.5. uart_write_wakeup

/*功能:uart_write_wakeup唤醒上层因串口端口写数据而堵塞的进程,通常在串口发送中断处理函数中调用该函数  *参数:  *     port: 需要唤醒写堵塞进程的串口端口  */ void uart_write_wakeup(struct uart_port *port)

3.1.6. uart_suspend_port

/*功能:uart_suspend_port用于挂起特定的串口端口  *参数:  *     drv:要挂起的串口端口锁所属的串口驱动  *     port:要挂起的串口端口  *返回值:成功返回0;否则返回错误码  */ int uart_suspend_port(struct uart_driver *drv, struct uart_port *port)

3.1.7. uart_resume_port

/*功能:uart_resume_port用于恢复某一已挂起的串口  *参数:  *     drv:要恢复的串口端口所属的串口驱动  *     port:要恢复的串口端口  *返回值:成功返回0;否则返回错误码  */ int uart_resume_port(struct uart_driver *drv, struct uart_port *port)

3.1.8. uart_get_baud_rate

/*功能:uart_get_baud_rate通过解码termios结构体来获取指定串口的波特率  *参数:  *     port:要获取波特率的串口端口  *     termios:当前期望的termios配置(包括串口波特率)  *     old:以前的termios配置,可以为NULL  *     min:可以接受的最小波特率  *     max:可以接受的最大波特率  *     返回值:串口波特率  */ unsigned int uart_get_baund_rate(struct uart_port *port, struct ktermios *termios, struct ktermios *old,unsigned int min, unsigned int max)

3.1.9. uart_get_divisor

/*功能:uart_get_divisor 用于计算某一波特率的串口时钟分频数(串口波特率除数)  *参数:  *     port:要计算分频数的串口端口  *     baud:期望的波特率  *返回值:串口时钟分频数  */ unsigned int uart_get_divisor(struct uart_port *port, unsigned int baund)

3.1.10. uart_update_timeout

/*功能:uart_update_timeout用于更新(设置)串口FIFO超出时间  *参数:  *     port:要更新超时间的串口端口  *     cfalg:termios结构体的cflag值  *     baud:串口的波特率  */ void uart_update_timeout(struct uart_port *port,unsigned int cflag, unsigned int baud)

3.1.11. uart_insert_char

/*功能:uart_insert_char用于向uart层插入一个字符  *参数:  *     port:要写信息的串口端口  *     status:RX buffer状态  *     overrun:在status中的overrun bit掩码  *     ch:需要插入的字符  *     flag:插入字符的flag:TTY_BREAK,TTY_PSRIYY, TTY_FRAME  */ void uart_insert_char(struct uart_port *port, unsigned int status, unsigned int overrun,unsigned int ch, unsigned int flag)

3.1.12. uart_console_write

/*功能:uart_console_write用于向串口端口写一控制台信息  *参数:  *     port:要写信息的串口端口  *     s:要写的信息  *     count:信息的大小  *     putchar:用于向串口端口写字符的函数,该函数有两个参数:串口端口和要写的字符  */ Void uart_console_write(struct uart_port *port,const char *s, unsigned int count,viod(*putchar)(struct uart_port*, int))

4. 模块使用说明

4.1. 串口编程

4.1.1. 串口控制函数

Linux的tty架构及UART驱动知识点有哪些

4.1.2. 串口配置流程

(1) 保持原先串口配置,使用tegetatrr(fd, &oldtio);

struct termious newtio, oldtio; tegetattr(fd, &oldtio);

(2) 激活选项有CLOCAL和CREAD,用于本地连接和接收使用

newtio.cflag |= CLOCAL|CREAD;

(3) 设置波特率

newtio.c_cflag = B115200;

(4) 设置数据位,需使用掩码设置

newtio.c_cflag &= ~CSIZE; Newtio.c_cflag |= CS8;

(5) 设置停止位,通过激活c_cflag中的CSTOP实现。若停止位为1,则清除CSTOPB,若停止位为2,则激活CSTOP

newtio.c_cflag &= ~CSTOPB; /*停止位设置为1*/ Newtio.c_cflag |= CSTOPB; /*停止位设置为2 */

(6) 设置流控

newtio.c_cfag |= CRTSCTS /*开启硬件流控 */ newtio.c_cfag |= (IXON | IXOFF | IXANY); /*开启软件流控*/

(7) 奇偶检验位设置,使用c_cflag和c_ifag. 设置奇校验

newtio.c_cflag |= PARENB; newtio.c_cflag |= PARODD; newtio.c_iflag |= (INPCK | ISTRIP);

设置偶校验

newtio.c_iflag |= (INPCK | ISTRIP); newtio.c_cflag |= PARENB; newtio.c_cflag |= ~PARODD;

(8) 设置最少字符和等待时间,对于接收字符和等待时间没有什么特别的要求,可设置为0:

newtio.c_cc[VTIME] = 0; newtio.c_cc[VMIN]  = 0;

(9) 处理要写入的引用对象  tcflush函数刷清(抛弃)输入缓冲(终端程序已经接收到,但用户程序尚未读)或输出缓冲(用户程序已经写,但未发送)。

int tcflash(int filedes, int quene) quene数应当是下列三个常数之一:   *TCIFLUSH 刷清输入队列   *TCOFLUSH 刷清输出队列   *TCIOFLUSH 刷清输入、输出队列 例如: tcflush(fd, TCIFLUSH);

(10) 激活配置,在完成配置后,需要激活配置使其生效。使用tcsetattr()函数:

int tcsetarr(int filedes, const struct termios *termptr); opt 指定在什么时候新的终端属性才起作用,    *TCSANOW:更改立即发生    *TCSADRAIN:发送了所有输出后更改才发生。若更改输出参数则应使用此选项    *TCSAFLUSH:发送了所有输出后更改才发生。更进一步,在更改发生时未读的                  所有输入数据都被删除(刷清) 例如:tcsetatrr(fd, TCSANOW, &newtio);

4.1.3. 使用流程

(1)打开串口,例如"/dev/ttySLB0"

fd = open("/dev/ttySLB0",O_RDWR | O_NOCTTY | O_NDELAY); O_NOCTTY:是为了告诉Linux这个程序不会成为这个端口上的“控制终端”。如果不这样做的话,所有的输入,比如键盘上过来的Ctrl+C中止信号等等,会影响到你的进程。 O_NDELAY:这个标志则是告诉Linux这个程序并不关心DCD信号线的状态,也就是不管串口是否有数据到来,都是非阻塞的,程序继续执行。

(2)恢复串口状态为阻塞状态,用于等待串口数据的读入,用fcntl函数:

fcntl(fd,F_SETFL,0);  //F_SETFL:设置文件flag为0,即默认,即阻塞状态

(3)接着测试打开的文件描述符是否应用一个终端设备,以进一步确认串口是否正确打开。

isatty(STDIN_FILENO);

(4)读写串口

串口的读写与普通文件一样,使用read,write函数 read(fd, buf ,8); write(fd,buff,8);

4.1.4. Demo

以下给出一个测温模块收取数据的例子

#include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <termios.h> #include <stdio.h> #include <string.h> #include <unistd.h> #include <log/log.h> #include <stdlib.h>  #define UART_DEVICE     "/dev/ttySLB1"  struct temp {  float temp_max1;  float temp_max2;  float temp_max3;  float temp_min;  float temp_mean;  float temp_enviromem;  char temp_col[1536]; };  int main(void) {  int count, i, fd;  struct termios oldtio, newtio;  struct temp *temp;  temp = (struct temp *)malloc(sizeof(struct temp));  if (!temp) {   printf("malloc failed\n");   return -1;  }   char cmd_buf1[] = { 0xAA, 0x01, 0x04, 0x00, 0x06, 0x10, 0x05, 0x00, 0xBB};  char cmd_buf2[] = { 0xAA, 0x01, 0x04, 0x00, 0x00, 0xA0, 0x00, 0x03, 0xBB};  char cmd_buf3[] = { 0xAA, 0x01, 0x04, 0x00, 0x03, 0x10, 0x01, 0x00, 0xBB};  char read_buf[2000];   //-----------打开uart设备文件------------------  fd = open(UART_DEVICE, O_RDWR | O_NOCTTY);  if (fd < 0) {   printf("Open %s failed\n", UART_DEVICE);   return -1;  } else {   printf("Open %s successfully\n", UART_DEVICE);  }   //-----------设置操作参数-----------------------  tcgetattr(fd, &oldtio);//获取当前操作模式参数  memset(&newtio, 0, sizeof(newtio));   //波特率=230400 数据位=8 使能数据接收  newtio.c_cflag = B230400 | CS8 | CLOCAL | CREAD | CSTOPB;  newtio.c_iflag = IGNPAR;   tcflush(fd, TCIFLUSH);//清空输入缓冲区和输出缓冲区  tcsetattr(fd, TCSANOW, &newtio);//设置新的操作参数   //printf("input: %s, len = %d\n", cmd_buf, strlen(cmd_buf));  //------------向urat发送数据-------------------   for (i = 0; i < 9; i++)   printf("%#X ", cmd_buf1[i]);   count = write(fd, cmd_buf1, 9);  if (count != 9) {   printf("send failed\n");   return -1;  }   usleep(500000);   memset(read_buf, 0, sizeof(read_buf));  count = read(fd, read_buf, sizeof(read_buf));  if (count > 0) {   for (i = 0; i < count; i++);   temp->temp_max1 = read_buf[7] << 8 | read_buf[6];   temp->temp_max2 = read_buf[9] << 8 | read_buf[8];   temp->temp_max3 = read_buf[11] << 8 | read_buf[10];   temp->temp_min  = read_buf[13] << 8 | read_buf[12];   temp->temp_mean = read_buf[15] << 8 | read_buf[14];    printf("temp->temp_max1 = %f\n", temp->temp_max1 * 0.01);   printf("temp->temp_max2 = %f\n", temp->temp_max2 * 0.01);   printf("temp->temp_max3 = %f\n", temp->temp_max3 * 0.01);   printf("temp->temp_min  = %f\n", temp->temp_min  * 0.01);   printf("temp->temp_mean = %f\n", temp->temp_mean * 0.01);      } else {   printf("read temp failed\n");   return -1;  }   count = write(fd, cmd_buf3, 9);  if (count != 9) {   printf("send failed\n");   return -1;  }   usleep(365);  memset(read_buf, 0, sizeof(read_buf));  count = read(fd, read_buf, sizeof(read_buf));  if (count > 0) {   for (i = 0; i < count; i++);   temp->temp_enviromem = read_buf[7] << 8 | read_buf[6];    printf("temp->temp_enviromem = %f\n", temp->temp_enviromem * 0.01);   } else {   printf("read enviromem failed\n");   return -1;  }      count = write(fd, cmd_buf2, 9);  if (count != 9) {   printf("send failed\n");   return -1;  }   usleep(70000);  memset(read_buf, 0, sizeof(read_buf));  memset(temp->temp_col, 0, sizeof(temp->temp_col));  count = read(fd, read_buf, sizeof(read_buf));  printf("count = %d\n", count);  if (count > 0) {   for (i = 0; i < count - 7; i++)   temp->temp_col[i] = read_buf[i+6];   for (i = 0; i < 1536; i++)   {    if (!(i%10))     printf("\n");    printf("%#X ", temp->temp_col[i]);   }  } else {   printf("read temp colour failed\n");   return -1;  }  free(temp);    close(fd);   tcsetattr(fd, TCSANOW, &oldtio); //恢复原先的设置   return 0; }

感谢各位的阅读,以上就是“Linux的tty架构及UART驱动知识点有哪些”的内容了,经过本文的学习后,相信大家对Linux的tty架构及UART驱动知识点有哪些这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!

推荐阅读:
  1. MySQL架构体系知识点有哪些
  2. Reactive架构的知识点有哪些

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

linux uart

上一篇:如何转换windows2008R2

下一篇:c语言怎么实现含递归清场版扫雷游戏

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》