排序算法的性能提升方法有哪些

发布时间:2021-10-22 17:34:26 作者:iii
来源:亿速云 阅读:195

本篇内容介绍了“排序算法的性能提升方法有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

冒泡排序

这是最简单的排序算法。只需比较每对相邻的元素,并检查元素是否有序,否则交换两个元素,直到所有元素都被排序为止。

for(int i =0;i < n; i++){            for(int j=0;j < n -1; j++){                if(arr[j] > arr[j+1]){                    int temp = arr[j];                    arr[j] = arr[j+1];                    arr[j+1] = temp;               }            }        }

排序算法的性能提升方法有哪些

图源:谷歌

(1) 性能分析:

时间复杂度:

空间复杂度:O(1)。

由于只输入了数组并未使用任何额外的数据结构,因此空间复杂度将为O(1)。

(2) 改进版冒泡排序:

如果看一下代码,就会发现在上述排序算法中即使数组已经排序,时间复杂度也将相同,即O(n&sup2;)。

为了克服这个问题,提出了一种改进算法。创建一个标志来确定数组是否已排序,该标志会检查所有相邻对之间是否发生了交换。如果遍历整个数组时没有交换,则该数组已完全排序,因此可以跳出循环。这大大降低了算法的时间复杂度。

for(int i =0;i < n; i++){            boolean isSwapped =false;            for(int j=0;j < n -1; j++){               if(arr[j] > arr[j+1]){                    int temp = arr[j];                    arr[j] = arr[j+1];                    arr[j+1] = temp;                    isSwapped =true;                }            if(!isSwapped){                break;              }           }        }

(3) 性能分析:

时间复杂度:

空间复杂度:O(1)。

选择排序

假设排序算法中第一个元素是最小元素,然后检查数组的其余部分中是否存在小于假定最小值的元素。若存在,就交换假定的最小值和实际的最小值,否则转移到下一个元素。

for(int i=0;i<arr.length; i++) {                      int minIndex = i;                       for(int j=i+1;j<arr.length; j++) {                         if(arr[j]<arr[minIndex]) {                           minIndex = j;                         }                      }                      int temp = arr[i];                      arr[i] = arr[minIndex];                      arr[minIndex] = temp;                   }

性能分析:

时间复杂度:

空间复杂度:O(1)。

就像之前的算法一样,除了输入数组之外没有利用任何额外的数据结构,因此空间复杂度将为O(1)。

插入排序

在这种排序算法中,对于每个元素,都要检查其顺序是否正确,直到当前元素为止。由于第一个元素是有序的,所以我们从第二个元素开始检查顺序是否正确否则交换元素。因此,在任何给定元素上,检查当前元素是否大于上一个元素。如果不是,继续交换元素,直到当前元素大于上一个元素为止。

for(int i =1;i < n; i++) {            int j = i;            while(j >0&& arr[j] < arr[j-1]) {                int temp = arr[j];                arr[j] = arr[j-1];                arr[j-1] = temp;                j--;            }        }

性能分析:

时间复杂度:

空间复杂度:O(1)。

由于除了输入数组之外,没有使用任何额外的数据结构,因此空间复杂度将为O(1)。

快速排序

快速排序也被称为分区排序。该排序算法因其分而治之的概念相较于之前的算法效率更高

首先确定一个主元,然后找到该主元位置的正确索引,将该数组分为两个子数组。一个子数组包含小于主元的元素,另一个子数组包含大于主元的元素。然后,递归调用这两个子数组,直到无法进一步划分数组为止。

publicstaticvoid quicksort(int[] arr, int low, int high) {                     if(low >= high) return;                     int pivotPosition = partition(arr, low, high);                     quicksort(arr,low, pivotPosition-1);                     quicksort(arr, pivotPosition+1, high);                 }

但是如何划分子数组呢?

假设数组的最后一个元素是主元,则用两个指针遍历整个数组。左指针指向的元素应小于主元,右指针指向的元素应大于主元。如果不是,则在左右指针处交换元素以对应数组中的特定位置,左边的元素较小,而右边的元素较大。然后,将主元插入此位置。

publicstaticint partition(int[] arr, int low, int high) {                     int pivot = arr[high];                     int left = low, right = high-1;                     while(left < right) {                        while(arr[left]<pivot) {                             left++;                        }                        while(arr[right]>pivot) {                             right--;                        }                        if(left >= right) {                             break;                        }                        int temp = arr[left];                        arr[left] = arr[right];                        arr[right] = temp;                     }                     int temp = arr[left];                     arr[left] = arr[high];                     arr[high] = temp;                     return left;                 }

性能分析:

时间复杂度:

空间复杂度:O(n)。

由于递归调用quicksort函数,因此使用内部堆栈来存储这些函数调用。堆栈中最多有n个调用,因此空间复杂度为O(n)。

合并排序

合并排序和快速排序一样,都使用分而治之概念。在合并排序主要工作是合并子数组,而在快速排序中,主要工作是对数组进行分区/划分,因此快速排序也称为分区排序。

下面的函数会一直将数组递归地分成两个子数组直到每个子数组只有一个元素。

publicvoid merge(int arr[], int l, int m, int r) {              int n1 = m-l+1;              int n2 = r-m;              int[] L =new int[n1];              int[] R =new int[n2];              for(int i =0;i < n1; i++) {                  L[i] = arr[l+i];              }              for(int i =0;i < n2; i++) {                  R[i] = arr[m+1+i];              }              int i =0, j =0, k =l;              while(i < n1 && j < n2) {                  if(L[i] <=R[j]) {                      arr[k++] =L[i++];                  }                  else {                      arr[k++] =R[j++];                  }              }              while(i < n1) {                  arr[k++] =L[i++];              }              while(j < n2) {                  arr[k++] =R[j++];              }

将这些子数组存储在两个新数组中后,就根据它们的顺序进行合并,并将它们存储到输入数组中。所有这些子数组合并后,输入数组就排序完成了。

publicvoid merge(int arr[], int l, int m, int r) {              int n1 = m-l+1;              int n2 = r-m;              int[] L =new int[n1];              int[] R =new int[n2];              for(int i =0;i < n1; i++) {                  L[i] = arr[l+i];              }              for(int i =0;i < n2; i++) {                  R[i] = arr[m+1+i];              }              int i =0, j =0, k =l;              while(i < n1 && j < n2) {                  if(L[i] <=R[j]) {                      arr[k++] =L[i++];                  }                  else {                      arr[k++] =R[j++];                  }              }              while(i < n1) {                  arr[k++] =L[i++];              }              while(j < n2) {                  arr[k++] =R[j++];              }          }

性能分析:

时间复杂度:

空间复杂度:O(n)

由于递归调用MergeSort函数,因此使用内部堆栈来存储这些函数调用。堆栈中最多有n个调用,因此空间复杂度为O(n)。

排序算法的性能提升方法有哪些

上面提到的算法是基于比较的排序算法,因为在对元素进行相互比较之后再对其进行排序。但是,还有其他基于非比较的排序算法,例如计数排序、基数排序、桶排序等,由于时间复杂度为O(n),因此也称为线性排序算法。

每种算法各自都有优缺点,采用哪种算法取决于优先级。如果效率上没有问题,可以使用易实现的冒泡排序。或者在数组几乎排好序时使用插入排序,因为此时插入排序的时间复杂度是线性的。

“排序算法的性能提升方法有哪些”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

推荐阅读:
  1. PHP7性能提升原因有哪些
  2. php7的性能提升有哪些

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

java php

上一篇:怎么通过PowerShell卸载Windows 10内置应用程序

下一篇:如何修复Windows无法在Windows 10上安装所需的文件错误

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》