什么是贝叶斯Bayes定理

发布时间:2021-10-13 14:58:57 作者:iii
来源:亿速云 阅读:127

本篇内容介绍了“什么是贝叶斯Bayes定理”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

看了贝叶斯定理,大多数文章都一步步解释贝叶斯公式,用抽象的实例如计算发病率,计算吸毒率甚至计算渣女的概率解释这个伟大的公式,又为此搞出一堆“先验率”、“后验率”等抽象的词汇解释公式内涵。一个命题还没有说清楚又搞出一些新词汇、新概念反而污染了公式本身的纯粹性和朴实性。

我们试图想象贝叶斯是怎么想出这个定理?都是人类为什么他能想出来,他的思维逻辑怎么形成的,这个问题说明白了对人类从事工作有着重要意义。而不是死记别人公式,用一个个概念骗人,冠冕堂皇的说成“术语”。

假设有A集合,B集合,A和B有交集,A+B是全集,这就是贝叶斯所知道的已知条件。贝叶斯喜欢琢磨,琢磨什么呢?就是A和B都是概率,A∩B这个概率怎么表示,因为当一些人琢磨八股文用毕生精力搏取功名的时候,贝叶斯的追求是怎么用公式表达自然界,越简单越好,至于之后能用到哪里不是他关心的事。。。。

因为A与B有交集,那么B在A里占比多少?A在B里占比多少?先不管他是不是概率,Thomas Bayes给出了第一个抽象表示,即

A∩B/B,交集在B里的占比,反之A∩B/A是交集在A里的占比,再简化表示一下,

A|B=A∩B/B  (1)交集在B里占比

B|A=A∩B/A (2)交集在A里的占比

公式(1)和(2)里有公用项,Thomas Bayes毫不犹豫的抵消公用项以简化公式,即

A|B/(B|A)=A/B    

如以上A,B代指不同事件的概率,即

P(A|B)=P(A)*P(B|A)/P(B) (3)

公式(3)就是大名鼎鼎的贝叶斯定理公式,这个公式在其死后被发现,对条件概率有巨大贡献。

也就是说

P(A),P(B)分别代表两个不同事件的发生概率,贝爷想知道,B事件发生时,A发生的概率P(A|B),该概率等同于P(A)和一个因子结合,这个因子就是P(B|A)/P(B),也就是说,A事件发生时,B发生的概率与P(B)的比。

进一步说,

想计算B事件发生时,A发生的概率可以理解成A本身的概率受一个因子干扰,这个因子可能放大A本身的概率,也可能降低A本身的概率,如果A发生时,B发生概率越大,P(A|B)越大,成正比,反之,P(B)越大,P(A|B)越小,成反比。

所以,女孩去夜店次数越多,是渣女的概率就越大,P(渣女|夜店)=P(渣女)* P(夜店|渣女)/ P(夜店), 关键因子P(夜店|渣女),渣女多出现在夜店这个事实增强了夜店里的女孩是渣女的概率。

那么可以用简短的一句话概括贝爷的定理:

P(A|B)与P(B|A)成正比,与P(B)成反比。

“什么是贝叶斯Bayes定理”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

推荐阅读:
  1. python源码,朴素贝叶斯实现多分类
  2. 贝叶斯全局优化 使用LightGBM调参

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

上一篇:VBScript中Join函数怎么用

下一篇:SQLServer怎样全文检索full-text语法

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》