C++实现可排序最大块数的方法

发布时间:2022-03-28 10:35:34 作者:iii
来源:亿速云 阅读:150

这篇“C++实现可排序最大块数的方法”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“C++实现可排序最大块数的方法”文章吧。

Max Chunks To Make Sorted 可排序的最大块数

Given an array arr that is a permutation of [0, 1, ..., arr.length - 1], we split the array into some number of "chunks" (partitions), and individually sort each chunk.  After concatenating them, the result equals the sorted array.

What is the most number of chunks we could have made?

Example 1:

Input: arr = [4,3,2,1,0]
Output: 1
Explanation:
Splitting into two or more chunks will not return the required result.
For example, splitting into [4, 3], [2, 1, 0] will result in [3, 4, 0, 1, 2], which isn"t sorted.

Example 2:

Input: arr = [1,0,2,3,4]
Output: 4
Explanation:
We can split into two chunks, such as [1, 0], [2, 3, 4].
However, splitting into [1, 0], [2], [3], [4] is the highest number of chunks possible.

Note:

这道题给了我们一个长度为n的数组,里面的数字是[0, n-1]范围内的所有数字,无序的。现在让我们分成若干块儿,然后给每一小块儿分别排序,再组合到一起,使原数组变得有序,问我们最多能分多少块,题目中的两个例子很好的解释了题意。我们首先来分析例子1,这是一个倒序的数组,第一个数字是最大的,为4,那么我们想,这个数字4原本是应该位于数组的最后一个位置,所以中间不可能断开成新的块了,要不然数字4就没法跑到末尾去了。分析到这里,我们应该隐约有点感觉了,当前数字所在的块至少要到达坐标为当前数字大小的地方,比如数字4所在的块至少要包括i=4的那个位置。那么带着这个发现,来分析例子2。第一个数字是1,那么当前数字1所在的块至少要到 i=1 的位置,然后我们去 i=1 的位置上看,发现是数字0,并没有超过 i=1 的范围,那么前两个数就可以断开成一个新的块儿。再往后看,i=2 的位置是2,可以单独断开,后面的3和4也可以分别断开。所以其实这道题跟Jump Game II那题很像,我们需要维护一个最远能到达的位置,这里的每个数字相当于那道题中的跳力,只有当我们刚好到达最远点的时候,就可以把之前断成一个新的块儿了。

我们遍历原数组,用cur表示能到达的最远点,然后我们遍历当前位置到cur之间的所有点,遍历的同时如果遇到更大的数字就更新cur,当cur大于等于末尾数字的时候,此时不能再拆分新块儿了,返回结果res加1。否则的话说明到达了最远点,更新第一个for循环的变量i,并且结果res自增1。来看个例子:

[2 0 1 4 3]

当 i=0 时,cur=2,j=1,然后我们发现 j=1 和 j=2 的数字都不会更新cur,且cur也没有大于等于3,所以此时 j=3 的时候退出了内部的for循环,i赋值为2,结果res为1。然后此时 i=3,cur=4,4已经大于末尾的3了,直接返回res加1,即2,参见代码如下:

解法一:

class Solution {
public:
    int maxChunksToSorted(vector<int>& arr) {
        int res = 0, n = arr.size();
        for (int i = 0; i < n; ++i) {
            int cur = arr[i], j = i + 1;
            for (; j <= cur; ++j) {
                cur = max(cur, arr[j]);
                if (cur >= arr.back()) return res + 1;
            }
            i = j - 1;
            ++res;
        }
        return res;
    }
};

其实这道题有更霸道的解法,我们仔细观察一些例子,可以发现断开为新块儿的地方都是当之前出现的最大值正好和当前位置坐标相等的地方,比如例子2中,当 i=1 时,之前最大的数字是1,所以可以断开。而在例子1中,当 i=4 时,才和之前出现过的最大数字4相等,此时断开也没啥意义了,因为后面已经没有数字了,所以还只是一个块儿,参见代码如下: 

解法二:

class Solution {
public:
    int maxChunksToSorted(vector<int>& arr) {
        int res = 0, n = arr.size(), mx = 0;
        for (int i = 0; i < n; ++i) {
            mx = max(mx, arr[i]);
            if (mx == i) ++res;
        }
        return res;
    }
};

以上就是关于“C++实现可排序最大块数的方法”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注亿速云行业资讯频道。

推荐阅读:
  1. 最简单的排序算法(C和C++实现)
  2. C++实现十进制数转为其它进制数的方法

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

c++

上一篇:JavaScript中如何使用flat()实现数组扁平化

下一篇:JavaScript中如何使用正则实现数组扁平化

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》