您好,登录后才能下订单哦!
本篇内容介绍了“C++如何实现平衡二叉树”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of everynode never differ by more than 1.
Example 1:
Given the following tree [3,9,20,null,null,15,7]:
3
/
9 20
/
15 7
Return true.
Example 2:
Given the following tree [1,2,2,3,3,null,null,4,4]:
1
/
2 2
/
3 3
/
4 4
Return false.
求二叉树是否平衡,根据题目中的定义,高度平衡二叉树是每一个结点的两个子树的深度差不能超过1,那么我们肯定需要一个求各个点深度的函数,然后对每个节点的两个子树来比较深度差,时间复杂度为O(NlgN),代码如下:
解法一:
class Solution { public: bool isBalanced(TreeNode *root) { if (!root) return true; if (abs(getDepth(root->left) - getDepth(root->right)) > 1) return false; return isBalanced(root->left) && isBalanced(root->right); } int getDepth(TreeNode *root) { if (!root) return 0; return 1 + max(getDepth(root->left), getDepth(root->right)); } };
上面那个方法正确但不是很高效,因为每一个点都会被上面的点计算深度时访问一次,我们可以进行优化。方法是如果我们发现子树不平衡,则不计算具体的深度,而是直接返回-1。那么优化后的方法为:对于每一个节点,我们通过checkDepth方法递归获得左右子树的深度,如果子树是平衡的,则返回真实的深度,若不平衡,直接返回-1,此方法时间复杂度O(N),空间复杂度O(H),参见代码如下:
解法二:
class Solution { public: bool isBalanced(TreeNode *root) { if (checkDepth(root) == -1) return false; else return true; } int checkDepth(TreeNode *root) { if (!root) return 0; int left = checkDepth(root->left); if (left == -1) return -1; int right = checkDepth(root->right); if (right == -1) return -1; int diff = abs(left - right); if (diff > 1) return -1; else return 1 + max(left, right); } };
“C++如何实现平衡二叉树”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。