您好,登录后才能下订单哦!
这篇文章主要介绍了javascript基于牛顿迭代法如何实现求浮点数的平方根的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇javascript基于牛顿迭代法如何实现求浮点数的平方根文章都会有所收获,下面我们一起来看看吧。
首先是牛顿迭代法原理:
比如我们要求a的平方根,首先随便猜一个近似值x,然后不断令x等于x和a/x的平均数,迭代几次后x的值就已经相当精确了。
如我们要求的数学假设为 a=7, var x=a;
( 7 + 7/7 ) / 2 = 3.64287514
( 3.64287514 + 7/3.64287514 ) / 2 = ?
下面是利用JavaScript实现
var G={ result:0 ,sqrt:function(a){ var x=a; for(var i=0;i<=Math.floor(a);i++) { x=(x+a/x)/2; if(x-this.result===0){ //用来减少循环次数 break; } this.result=x; document.body.innerHTML+="this.result-->"+this.result+"-->X:"+x+"<br/>"; } } };
运行
G.sqrt(16)
: 结果为4G.sqrt(2)
: 结果为1.414G.sqrt(100.2565)
当然,网上对牛顿迭代法的算法好像还有其他实现,读者可以根据需要选择适合自己理解的方法.
关于“javascript基于牛顿迭代法如何实现求浮点数的平方根”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“javascript基于牛顿迭代法如何实现求浮点数的平方根”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。