您好,登录后才能下订单哦!
这篇文章主要介绍“java中lambda的原理和作用是什么”,在日常操作中,相信很多人在java中lambda的原理和作用是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”java中lambda的原理和作用是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
java8最大的特性就是引入Lambda表达式,即函数式编程,可以将行为进行传递。总结就是:使用不可变值与函数,函数对不可变值进行处理,映射成另一个值。
函数接口是只有一个抽象方法的接口,用作 Lambda 表达式的类型。使用@FunctionalInterface注解修饰的类,编译器会检测该类是否只有一个抽象方法或接口,否则,会报错。可以有多个默认方法,静态方法。
public class Test { public static void main(String[] args) { Predicate<Integer> predicate = x -> x > 185; Student student = new Student("9龙", 23, 175); System.out.println( "9龙的身高高于185吗?:" + predicate.test(student.getStature())); Consumer<String> consumer = System.out::println; consumer.accept("命运由我不由天"); Function<Student, String> function = Student::getName; String name = function.apply(student); System.out.println(name); Supplier<Integer> supplier = () -> Integer.valueOf(BigDecimal.TEN.toString()); System.out.println(supplier.get()); UnaryOperator<Boolean> unaryOperator = uglily -> !uglily; Boolean apply2 = unaryOperator.apply(true); System.out.println(apply2); BinaryOperator<Integer> operator = (x, y) -> x * y; Integer integer = operator.apply(2, 3); System.out.println(integer); test(() -> "我是一个演示的函数式接口"); } /** * 演示自定义函数式接口使用 * * @param worker */ public static void test(Worker worker) { String work = worker.work(); System.out.println(work); } public interface Worker { String work(); } } //9龙的身高高于185吗?:false //命运由我不由天 //9龙 //10 //false //6 //我是一个演示的函数式接口
以上演示了lambda接口的使用及自定义一个函数式接口并使用。下面,我们看看java8将函数式接口封装到流中如何高效的帮助我们处理集合。
注意:Student::getName例子中这种编写lambda表达式的方式称为方法引用。格式为ClassNmae::methodName。是不是很神奇,java8就是这么迷人。
示例:本篇所有示例都基于以下三个类。OutstandingClass:班级;Student:学生;SpecialityEnum:特长。
惰性求值:只描述Stream,操作的结果也是Stream,这样的操作称为惰性求值。惰性求值可以像建造者模式一样链式使用,最后再使用及早求值得到最终结果。
及早求值:得到最终的结果而不是Stream,这样的操作称为及早求值。
将流转换为list。还有toSet(),toMap()等。及早求值。
public class TestCase { public static void main(String[] args) { List<Student> studentList = Stream.of(new Student("路飞", 22, 175), new Student("红发", 40, 180), new Student("白胡子", 50, 185)).collect(Collectors.toList()); System.out.println(studentList); } } //输出结果 //[Student{name='路飞', age=22, stature=175, specialities=null}, //Student{name='红发', age=40, stature=180, specialities=null}, //Student{name='白胡子', age=50, stature=185, specialities=null}]
顾名思义,起过滤筛选的作用。内部就是Predicate接口。惰性求值。
比如我们筛选出出身高小于180的同学。
public class TestCase { public static void main(String[] args) { List<Student> students = new ArrayList<>(3); students.add(new Student("路飞", 22, 175)); students.add(new Student("红发", 40, 180)); students.add(new Student("白胡子", 50, 185)); List<Student> list = students.stream() .filter(stu -> stu.getStature() < 180) .collect(Collectors.toList()); System.out.println(list); } } //输出结果 //[Student{name='路飞', age=22, stature=175, specialities=null}]
转换功能,内部就是Function接口。惰性求值
public class TestCase { public static void main(String[] args) { List<Student> students = new ArrayList<>(3); students.add(new Student("路飞", 22, 175)); students.add(new Student("红发", 40, 180)); students.add(new Student("白胡子", 50, 185)); List<String> names = students.stream().map(student -> student.getName()) .collect(Collectors.toList()); System.out.println(names); } } //输出结果 //[路飞, 红发, 白胡子]
例子中将student对象转换为String对象,获取student的名字。
将多个Stream合并为一个Stream。惰性求值
public class TestCase { public static void main(String[] args) { List<Student> students = new ArrayList<>(3); students.add(new Student("路飞", 22, 175)); students.add(new Student("红发", 40, 180)); students.add(new Student("白胡子", 50, 185)); List<Student> studentList = Stream.of(students, asList(new Student("艾斯", 25, 183), new Student("雷利", 48, 176))) .flatMap(students1 -> students1.stream()).collect(Collectors.toList()); System.out.println(studentList); } } //输出结果 //[Student{name='路飞', age=22, stature=175, specialities=null}, //Student{name='红发', age=40, stature=180, specialities=null}, //Student{name='白胡子', age=50, stature=185, specialities=null}, //Student{name='艾斯', age=25, stature=183, specialities=null}, //Student{name='雷利', age=48, stature=176, specialities=null}]
调用Stream.of的静态方法将两个list转换为Stream,再通过flatMap将两个流合并为一个。
我们经常会在集合中求最大或最小值,使用流就很方便。及早求值。
public class TestCase { public static void main(String[] args) { List<Student> students = new ArrayList<>(3); students.add(new Student("路飞", 22, 175)); students.add(new Student("红发", 40, 180)); students.add(new Student("白胡子", 50, 185)); Optional<Student> max = students.stream() .max(Comparator.comparing(stu -> stu.getAge())); Optional<Student> min = students.stream() .min(Comparator.comparing(stu -> stu.getAge())); //判断是否有值 if (max.isPresent()) { System.out.println(max.get()); } if (min.isPresent()) { System.out.println(min.get()); } } } //输出结果 //Student{name='白胡子', age=50, stature=185, specialities=null} //Student{name='路飞', age=22, stature=175, specialities=null}
max、min接收一个Comparator(例子中使用java8自带的静态函数,只需要传进需要比较值即可。)并且返回一个Optional对象,该对象是java8新增的类,专门为了防止null引发的空指针异常。
可以使用max.isPresent()判断是否有值;可以使用max.orElse(new Student()),当值为null时就使用给定值;也可以使用max.orElseGet(() -> new Student());这需要传入一个Supplier的lambda表达式。
统计功能,一般都是结合filter使用,因为先筛选出我们需要的再统计即可。及早求值
public class TestCase { public static void main(String[] args) { List<Student> students = new ArrayList<>(3); students.add(new Student("路飞", 22, 175)); students.add(new Student("红发", 40, 180)); students.add(new Student("白胡子", 50, 185)); long count = students.stream().filter(s1 -> s1.getAge() < 45).count(); System.out.println("年龄小于45岁的人数是:" + count); } } //输出结果 //年龄小于45岁的人数是:2
reduce 操作可以实现从一组值中生成一个值。在上述例子中用到的 count 、 min 和 max 方法,因为常用而被纳入标准库中。事实上,这些方法都是 reduce 操作。及早求值。
public class TestCase { public static void main(String[] args) { Integer reduce = Stream.of(1, 2, 3, 4).reduce(0, (acc, x) -> acc+ x); System.out.println(reduce); } } //输出结果 //10
我们看得reduce接收了一个初始值为0的累加器,依次取出值与累加器相加,最后累加器的值就是最终的结果。
收集器,一种通用的、从流生成复杂值的结构。只要将它传给 collect 方法,所有的流就都可以使用它了。标准类库已经提供了一些有用的收集器,以下示例代码中的收集器都是从 java.util.stream.Collectors 类中静态导入的。
public class CollectorsTest { public static void main(String[] args) { List<Student> students1 = new ArrayList<>(3); students1.add(new Student("路飞", 23, 175)); students1.add(new Student("红发", 40, 180)); students1.add(new Student("白胡子", 50, 185)); OutstandingClass ostClass1 = new OutstandingClass("一班", students1); //复制students1,并移除一个学生 List<Student> students2 = new ArrayList<>(students1); students2.remove(1); OutstandingClass ostClass2 = new OutstandingClass("二班", students2); //将ostClass1、ostClass2转换为Stream Stream<OutstandingClass> classStream = Stream.of(ostClass1, ostClass2); OutstandingClass outstandingClass = biggestGroup(classStream); System.out.println("人数最多的班级是:" + outstandingClass.getName()); System.out.println("一班平均年龄是:" + averageNumberOfStudent(students1)); } /** * 获取人数最多的班级 */ private static OutstandingClass biggestGroup(Stream<OutstandingClass> outstandingClasses) { return outstandingClasses.collect( maxBy(comparing(ostClass -> ostClass.getStudents().size()))) .orElseGet(OutstandingClass::new); } /** * 计算平均年龄 */ private static double averageNumberOfStudent(List<Student> students) { return students.stream().collect(averagingInt(Student::getAge)); } } //输出结果 //人数最多的班级是:一班 //一班平均年龄是:37.666666666666664
maxBy或者minBy就是求最大值与最小值。
常用的流操作是将其分解成两个集合,Collectors.partitioningBy帮我们实现了,接收一个Predicate函数式接口。
将示例学生分为会唱歌与不会唱歌的两个集合。
public class PartitioningByTest { public static void main(String[] args) { //省略List<student> students的初始化 Map<Boolean, List<Student>> listMap = students.stream().collect( Collectors.partitioningBy(student -> student.getSpecialities(). contains(SpecialityEnum.SING))); } }
数据分组是一种更自然的分割数据操作,与将数据分成 ture 和 false 两部分不同,可以使用任意值对数据分组。Collectors.groupingBy接收一个Function做转换。
如图,我们使用groupingBy将根据进行分组为圆形一组,三角形一组,正方形一组。
例子:根据学生第一个特长进行分组
public class GroupingByTest { public static void main(String[] args) { //省略List<student> students的初始化 Map<SpecialityEnum, List<Student>> listMap = students.stream().collect( Collectors.groupingBy(student -> student.getSpecialities().get(0))); } }
Collectors.groupingBy与SQL 中的 group by 操作是一样的。
如果将所有学生的名字拼接起来,怎么做呢?通常只能创建一个StringBuilder,循环拼接。使用Stream,使用Collectors.joining()简单容易。
public class JoiningTest { public static void main(String[] args) { List<Student> students = new ArrayList<>(3); students.add(new Student("路飞", 22, 175)); students.add(new Student("红发", 40, 180)); students.add(new Student("白胡子", 50, 185)); String names = students.stream() .map(Student::getName).collect(Collectors.joining(",","[","]")); System.out.println(names); } } //输出结果 //[路飞,红发,白胡子]
joining接收三个参数,第一个是分界符,第二个是前缀符,第三个是结束符。也可以不传入参数Collectors.joining(),这样就是直接拼接。
本篇主要从实际使用讲述了常用的方法及流,使用java8可以很清晰表达你要做什么,代码也很简洁。本篇例子主要是为了讲解较为简单,大家可以去使用java8重构自己现有的代码,自行领会lambda的奥妙。
本文说的Stream要组合使用才会发挥更大的功能,链式调用很迷人,根据自己的业务去做吧。
到此,关于“java中lambda的原理和作用是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。