您好,登录后才能下订单哦!
这篇文章将为大家详细讲解有关go如何实现无限buffer的channel方法,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
总所周知,go 里面只有两种 channel,一种是 unbuffered channel, 其声明方式为
ch := make(chan interface{})另一种是 buffered channel,其声明方式为
bufferSize := 5
ch := make(chan interface{},bufferSize)对于一个 buffered channel,无论它的 buffer 有多大,它终究是有极限的。这个极限就是该 channel 最初被 make 时,所指定的 bufferSize 。
jojo,buffer channel 的大小是有极限的,我不做 channel 了。
一旦 channel 满了的话,再往里面添加元素的话,将会阻塞。
so how can we make a infinite buffer channel?
本文参考了 medinum 上面的一篇文章,有兴趣的同学可以直接阅读原文。
首先当然是建一个 struct,在百度翻译的帮助下,我们将这个 struct 取名为 InfiniteChannel
type InfiniteChannel struct {
}思考一下 channel 的核心行为,实际上就两个,一个流入(Fan in),一个流出(Fan out),因此我们添加如下几个 method。
func (c *InfiniteChannel) In(val interface{}) {
	// todo
}
func (c *InfiniteChannel) Out() interface{} {
	// todo
}通过 In() 接收的数据,总得需要一个地方来存放。我们可以用一个 slice 来存放,就算用 In() 往里面添加了很多元素,也可以通过 append() 来拓展 slice,slice 的容量可以无限拓展下去(内存足够的话),所以 channel 也是 infinite 。 InfiniteChannel 的第一个成员就这么敲定下来的。
type InfiniteChannel struct {
	data    []interface{}
}用户调用 In() 和 Out() 时,可能是并发的环境,在 go 中如何进行并发编程,最容易想到的肯定是 channel 了,因此我们在内部准备两个 channel,一个 inChan,一个 outChan,用 inChan 来接收数据,用 outChan 来流出数据。
type InfiniteChannel struct {
	inChan  chan interface{}
	outChan chan interface{}
	data    []interface{}
}
func (c *InfiniteChannel) In(val interface{}) {
	c.inChan <- val
}
func (c *InfiniteChannel) Out() interface{} {
	return <-c.outChan
}其中, inChan 和 outChan 都是 unbuffered channel。
此外,也肯定是需要一个 select 来处理来自 inChan 和 outChan 身上的事件。因此我们另起一个协程,在里面做 select 操作。
func (c *InfiniteChannel) background() {
	for true {
		select {
		case newVal := <-c.inChan:
			c.data = append(c.data, newVal)
        case c.outChan <- c.pop():		// pop() 将取出队列的首个元素
		}
	}
}
func NewInfiniteChannel() *InfiniteChannel {
	c := &InfiniteChannel{
		inChan:  make(chan interface{}),
		outChan: make(chan interface{}),
	}
	go c.background()	// 注意这里另起了一个协程
	return c
}ps:感觉这也算是 go 并发编程的一个套路了。即
在 new struct 的时候,顺手 go 一个 select 协程,select 协程内执行一个 for 循环,不停的 select,监听一个或者多个 channel 的事件。
struct 对外提供的 method,只会操作 struct 内的 channel(在本例中就是 inChan 和 outChan),不会操作 struct 内的其他数据(在本例中,In() 和 Out() 都没有直接操作 data)。
触发 channel 的事件后,由 select 协程进行数据的更新(在本例中就是 data )。因为只有 select 协程对除 channel 外的数据成员进行读写操作,且 go 保证了对于 channel 的并发读写是安全的,所以代码是并发安全的。
如果 struct 是 exported ,用户或许会越过 new ,直接手动 make 一个 struct,可以考虑将 struct 设置为 unexported,把它的首字母小写即可。
pop() 的实现也非常简单。
// 取出队列的首个元素,如果队列为空,将会返回一个 nil
func (c *InfiniteChannel) pop() interface{} {
	if len(c.data) == 0 {
		return nil
	}
	val := c.data[0]
	c.data = c.data[1:]
	return val
}用一个协程每秒钟生产一条数据,另一个协程每半秒消费一条数据,并打印。
func main() {
	c := NewInfiniteChannel()
	go func() {
		for i := 0; i < 20; i++ {
			c.In(i)
			time.Sleep(time.Second)
		}
	}()
	for i := 0; i < 50; i++ {
		val := c.Out()
		fmt.Print(val)
		time.Sleep(time.Millisecond * 500)
	}
}// out <nil>0<nil>1<nil>23<nil>4<nil><nil>5<nil>67<nil><nil>89<nil><nil>1011<nil>12<nil>13<nil>14<nil>15<nil>16<nil>17<nil><nil>1819<nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil> Process finished with the exit code 0
可以看到,将 InfiniteChannel 内没有数据可供消费时,调用 Out() 将会返回一个 nil,不过这也在我们的意料之中,原因是 pop() 在队列为空时,将会返回 nil。
目前 InfiniteChannel 的行为与标准的 channel 的行为是有出入的,go 中的 channel,在没有数据却仍要取数据时会被阻塞,如何实现这个效果?
我认为此处是是整篇文章最有技巧的地方,我第一次看到时忍不住拍案叫绝。
首先把原来的 background() 摘出来
func (c *InfiniteChannel) background() {
	for true {
		select {
		case newVal := <-c.inChan:
			c.data = append(c.data, newVal)
		case c.outChan <- c.pop():
		}
	}
}对 outChan 进行一个简单封装
func (c *InfiniteChannel) background() {
	for true {
		select {
		case newVal := <-c.inChan:
			c.data = append(c.data, newVal)
		case c.outChanWrapper() <- c.pop():
		}
	}
}
func (c *InfiniteChannel) outChanWrapper() chan interface{} {
	return c.outChan
}目前为止,一切照旧。
点睛之笔来了:
func (c *InfiniteChannel) outChanWrapper() chan interface{} {
	if len(c.data) == 0 {
		return nil
	}
	return c.outChan
}在 c.data 为空的时候,返回一个 nil
在 background() 中,当执行到 case c.outChan <- c.pop(): 时,实际上将会变成:
case nil <- nil:
在 go 中,是无法往一个 nil 的 channel 中发送元素的。例如
func main() {
	var c chan interface{}
	select {
	case c <- 1:
	}
}
// fatal error: all goroutines are asleep - deadlock!
func main() {
	var c chan interface{}
	select {
	case c <- 1:
	default:
		fmt.Println("hello world")
	}
}
// hello world因此,对于
select {
case newVal := <-c.inChan:
	c.data = append(c.data, newVal)
case c.outChanWrapper() <- c.pop():
}将会一直阻塞在 select 那里,直到 inChan 来了数据。
012345678910111213141516171819fatal error: all goroutines are asleep - deadlock!
最后,程序 panic 了,因为死锁了。
实际上 channel 除了 In() 和 Out() 外,还有一个行为,即 close(),如果 channel close 后,依旧从其中取元素的话,将会取出该类型的默认值。
func main() {
	c := make(chan interface{})
	close(c)
	for true {
		v := <-c
		fmt.Println(v)
		time.Sleep(time.Second)
	}
}
// output
// <nil>
// <nil>
// <nil>
// <nil>
func main() {
	c := make(chan interface{})
	close(c)
	for true {
		v, isOpen := <-c
		fmt.Println(v, isOpen)
		time.Sleep(time.Second)
	}
}
// output
// <nil> false
// <nil> false
// <nil> false
// <nil> false我们也需要实现相同的效果。
func (c *InfiniteChannel) Close() {
	close(c.inChan)
}
func (c *InfiniteChannel) background() {
	for true {
		select {
		case newVal, isOpen := <-c.inChan:
			if isOpen {
				c.data = append(c.data, newVal)
			} else {
				c.isOpen = false
			}
		case c.outChanWrapper() <- c.pop():
		}
	}
}
func NewInfiniteChannel() *InfiniteChannel {
	c := &InfiniteChannel{
		inChan:  make(chan interface{}),
		outChan: make(chan interface{}),
		isOpen:  true,
	}
	go c.background()
	return c
}
func (c *InfiniteChannel) outChanWrapper() chan interface{} {
    // 这里添加了对 c.isOpen 的判断
	if c.isOpen && len(c.data) == 0 {
		return nil
	}
	return c.outChan
}再测试一下
func main() {
	c := NewInfiniteChannel()
	go func() {
		for i := 0; i < 20; i++ {
			c.In(i)
			time.Sleep(time.Second)
		}
		c.Close()		// 这里调用了 Close
	}()
	for i := 0; i < 50; i++ {
		val := c.Out()
		fmt.Print(val)
		time.Sleep(time.Millisecond * 500)
	}
}// output 012345678910111213141516171819<nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil><nil> Process finished with the exit code 0
符合预期
目前看上去已经很完美了,但是和标准的 channel 相比,仍然有差距。因为标准的 channel 是有这种用法的
v,isOpen := <- ch
可以通过 isOpen 变量来获取 channel 的开闭情况。
因此 InfiniteChannel 也应该提供一个类似的 method
func (c *InfiniteChannel) OutAndIsOpen() (interface{}, bool) {
	// todo
}可惜的是,要想得知 InfiniteChannel 是否是 Open 的,就必定要访问 InfiniteChannel 内的 isOpen 成员。
type InfiniteChannel struct {
	inChan  chan interface{}
	outChan chan interface{}
	data    []interface{}
	isOpen  bool
}而 isOpen 并非 channel 类型,根据之前的套路,这种非 channel 类型的成员只应该被 select 协程访问。一旦有多个协程访问,就会出现并发问题,除非加锁。
我不能接受!所以干脆不提供这个 method 了,嘿嘿。
完整代码
func main() {
	c := NewInfiniteChannel()
	go func() {
		for i := 0; i < 20; i++ {
			c.In(i)
			time.Sleep(time.Second)
		}
		c.Close()
	}()
	for i := 0; i < 50; i++ {
		val := c.Out()
		fmt.Print(val)
		time.Sleep(time.Millisecond * 500)
	}
}
type InfiniteChannel struct {
	inChan  chan interface{}
	outChan chan interface{}
	data    []interface{}
	isOpen  bool
}
func (c *InfiniteChannel) In(val interface{}) {
	c.inChan <- val
}
func (c *InfiniteChannel) Out() interface{} {
	return <-c.outChan
}
func (c *InfiniteChannel) Close() {
	close(c.inChan)
}
func (c *InfiniteChannel) background() {
	for true {
		select {
		case newVal, isOpen := <-c.inChan:
			if isOpen {
				c.data = append(c.data, newVal)
			} else {
				c.isOpen = false
			}
		case c.outChanWrapper() <- c.pop():
		}
	}
}
func NewInfiniteChannel() *InfiniteChannel {
	c := &InfiniteChannel{
		inChan:  make(chan interface{}),
		outChan: make(chan interface{}),
		isOpen:  true,
	}
	go c.background()
	return c
}
// 取出队列的首个元素,如果队列为空,将会返回一个 nil
func (c *InfiniteChannel) pop() interface{} {
	if len(c.data) == 0 {
		return nil
	}
	val := c.data[0]
	c.data = c.data[1:]
	return val
}
func (c *InfiniteChannel) outChanWrapper() chan interface{} {
	if c.isOpen && len(c.data) == 0 {
		return nil
	}
	return c.outChan
}关于“go如何实现无限buffer的channel方法”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。