C++11中std::function的用法

发布时间:2021-06-18 13:38:02 作者:chen
来源:亿速云 阅读:344

本篇内容主要讲解“C++11中std::function的用法”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“C++11中std::function的用法”吧!

目录

1、源码准备

本文是基于gcc-4.9.0的源代码进行分析,std::function是C++11才加入标准的,所以低版本的gcc源码是没有std::function的,建议选择4.9.0或更新的版本去学习,不同版本的gcc源码差异应该不小,但是原理和设计思想的一样的。
源码下载地址:http://ftp.gnu.org/gnu/gcc

2、std::function简介

类模版std::function是一种通用的多态函数包装器。std::function的实例可以对任何可以调用的目标实体进行存储、复制、和调用操作,这些目标实体包括普通函数指针、类成员函数指针(第一个参数需要传入对应的this指针)、Lambda表达式或者某个类的实例(前提是这个类重载了()运算符)。std::function对象是对C++中现有的可调用实体的一种类型安全的包裹(我们知道像函数指针这类可调用实体,是类型不安全的)。

通常std::function是一个函数对象类,它包装其它任意的可调用实体,被包装的对象具有类型为T1,…,TN的N个参数,并且返回一个可转换到R类型的值。std::function使用模板转换构造函数接收被包装的函数对象;特别是,闭包类型可以隐式地转换为std::function。最简单的理解就是通过std::function对C++中各种可调用实体的封装,形成一个新的可调用的std::function对象,让我们不再纠结那么多的可调用实体之间如何进行方便高效的转换。

3、源码解析

3.1、std::function解析

std::function位于libstdc++-v3\include\std\functional中

template<typename _Res, typename... _ArgTypes>
class function<_Res(_ArgTypes...)> : public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>, private _Function_base
{
    typedef _Res _Signature_type(_ArgTypes...);

    template<typename _Functor>
    using _Invoke = decltype(__callable_functor(std::declval<_Functor&>())(std::declval<_ArgTypes>()...) );

    template<typename _Functor>
    using _Callable = __check_func_return_type<_Invoke<_Functor>, _Res>;

    template<typename _Cond, typename _Tp>
    using _Requires = typename enable_if<_Cond::value, _Tp>::type;

public:
    typedef _Res result_type;

    function() noexcept
        :_Function_base()
    {
    }

    function(nullptr_t) noexcept
        :_Function_base()
    {
    }

    template<typename _Res, typename... _ArgTypes>
    function(const function& __x)
        :_Function_base()
    {
        if (static_cast<bool>(__x))
        {
            _M_invoker = __x._M_invoker;
            _M_manager = __x._M_manager;
            __x._M_manager(_M_functor, __x._M_functor, __clone_functor);
        }
    }

    function(function&& __x)
        :_Function_base()
    { __x.swap(*this); }

    template<typename _Functor, typename = _Requires<_Callable<_Functor>, void>>
    function(_Functor __f)
    {
        typedef _Function_handler<_Signature_type, _Functor> _My_handler;

        if (_My_handler::_M_not_empty_function(__f))
        {
            _My_handler::_M_init_functor(_M_functor, std::move(__f));
            _M_invoker = &_My_handler::_M_invoke;
            _M_manager = &_My_handler::_M_manager;
        }
    }

    function& operator=(const function& __x)
    {
        function(__x).swap(*this);
        return *this;
    }

    function& operator=(function&& __x)
    {
        function(std::move(__x)).swap(*this);
        return *this;
    }

    function& operator=(nullptr_t)
    {
        if (_M_manager)
        {
            _M_manager(_M_functor, _M_functor, __destroy_functor);
            _M_manager = 0;
            _M_invoker = 0;
        }
        return *this;
    }

    template<typename _Functor>
    _Requires<_Callable<_Functor>, function&> operator=(_Functor&& __f)
    {
        function(std::forward<_Functor>(__f)).swap(*this);
        return *this;
    }

    template<typename _Functor>
    function& operator=(reference_wrapper<_Functor> __f) noexcept
    {
        function(__f).swap(*this);
        return *this;
    }

    void swap(function& __x)
    {
        std::swap(_M_functor, __x._M_functor);
        std::swap(_M_manager, __x._M_manager);
        std::swap(_M_invoker, __x._M_invoker);
    }

     explicit operator bool() const noexcept
     { return !_M_empty(); }

    _Res operator()(_ArgTypes... __args) const;
    {
        if (_M_empty())
            __throw_bad_function_call();
        return _M_invoker(_M_functor, std::forward<_ArgTypes>(__args)...);
    }

private:
    typedef _Res (*_Invoker_type)(const _Any_data&, _ArgTypes...);
    _Invoker_type _M_invoker;

从源代码中可以看出以下几点信息:

3.2、std::_Function_handler解析

std::_Function_handler位于libstdc++-v3\include\std\functional中

template<typename _Res, typename _Functor, typename... _ArgTypes>
class _Function_handler<_Res(_ArgTypes...), _Functor> : public _Function_base::_Base_manager<_Functor>
{
    typedef _Function_base::_Base_manager<_Functor> _Base;

public:
    static _Res _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
    {
        return (*_Base::_M_get_pointer(__functor))(std::forward<_ArgTypes>(__args)...);
    }
};

template<typename _Functor, typename... _ArgTypes>
class _Function_handler<void(_ArgTypes...), _Functor> : public _Function_base::_Base_manager<_Functor>
{
    typedef _Function_base::_Base_manager<_Functor> _Base;

public:
    static void _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
    {
        (*_Base::_M_get_pointer(__functor))(std::forward<_ArgTypes>(__args)...);
    }
};

template<typename _Res, typename _Functor, typename... _ArgTypes>
class _Function_handler<_Res(_ArgTypes...), reference_wrapper<_Functor> > : public _Function_base::_Ref_manager<_Functor>
{
    typedef _Function_base::_Ref_manager<_Functor> _Base;

public:
    static _Res _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
    {
        return __callable_functor(**_Base::_M_get_pointer(__functor))(std::forward<_ArgTypes>(__args)...);
    }
};

template<typename _Functor, typename... _ArgTypes>
class _Function_handler<void(_ArgTypes...), reference_wrapper<_Functor> > : public _Function_base::_Ref_manager<_Functor>
{
    typedef _Function_base::_Ref_manager<_Functor> _Base;

public:
    static void _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
    {
        __callable_functor(**_Base::_M_get_pointer(__functor))(std::forward<_ArgTypes>(__args)...);
    }
};

template<typename _Class, typename _Member, typename _Res, typename... _ArgTypes>
class _Function_handler<_Res(_ArgTypes...), _Member _Class::*> : public _Function_handler<void(_ArgTypes...), _Member _Class::*>
{
    typedef _Function_handler<void(_ArgTypes...), _Member _Class::*> _Base;

public:
    static _Res _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
    {
        return std::mem_fn(_Base::_M_get_pointer(__functor)->__value)(std::forward<_ArgTypes>(__args)...);
    }
};

template<typename _Class, typename _Member, typename... _ArgTypes>
class _Function_handler<void(_ArgTypes...), _Member _Class::*> : public _Function_base::_Base_manager<_Simple_type_wrapper< _Member _Class::* > >
{
    typedef _Member _Class::* _Functor;
    typedef _Simple_type_wrapper<_Functor> _Wrapper;
    typedef _Function_base::_Base_manager<_Wrapper> _Base;

public:
    static bool _M_manager(_Any_data& __dest, const _Any_data& __source, _Manager_operation __op)
    {
        switch (__op)
        {
            #ifdef __GXX_RTTI
            case __get_type_info:
                __dest._M_access<const type_info*>() = &typeid(_Functor);
                break;
            #endif

            case __get_functor_ptr:
                __dest._M_access<_Functor*>() = &_Base::_M_get_pointer(__source)->__value;
                break;

            default:
                _Base::_M_manager(__dest, __source, __op);
        }
        return false;
    }

    static void _M_invoke(const _Any_data& __functor, _ArgTypes... __args)
    {
        std::mem_fn(_Base::_M_get_pointer(__functor)->__value)(std::forward<_ArgTypes>(__args)...);
    }
};

从源代码中可以看出_Function_handler有六种重载形式,以下对其进行分类说明:

template<typename _Functor>
inline _Functor& __callable_functor(_Functor& __f)
{ return __f; }

template<typename _Member, typename _Class>
inline _Mem_fn<_Member _Class::*> __callable_functor(_Member _Class::* &__p)
{ return std::mem_fn(__p); }

template<typename _Member, typename _Class>
inline _Mem_fn<_Member _Class::*> __callable_functor(_Member _Class::* const &__p)
{ return std::mem_fn(__p); }

template<typename _Member, typename _Class>
inline _Mem_fn<_Member _Class::*> __callable_functor(_Member _Class::* volatile &__p)
{ return std::mem_fn(__p); }

template<typename _Member, typename _Class>
inline _Mem_fn<_Member _Class::*> __callable_functor(_Member _Class::* const volatile &__p)
{ return std::mem_fn(__p); }

关于上面提到的std::reference_wrapper和std::mem_fn,大家如果可以不懂的话一定要看下面两篇文章,不然的话就像学英语不会英语单词一样,根本不可能看懂std::function的内容的

《C++11的std::ref、std::cref源码解析》
《C++11的std::mem_fn源码解析》

3.3、_Any_data解析

_Any_data位于libstdc++-v3\include\std\functional中

union _Nocopy_types
{
    void*       _M_object;
    const void* _M_const_object;
    void (*_M_function_pointer)();
    void (_Undefined_class::*_M_member_pointer)();
};

union _Any_data
{
    void*       _M_access()       { return &_M_pod_data[0]; }
    const void* _M_access() const { return &_M_pod_data[0]; }

    template<typename _Tp>
    _Tp& _M_access()
    { return *static_cast<_Tp*>(_M_access()); }

    template<typename _Tp>
    const _Tp& _M_access() const
    { return *static_cast<const _Tp*>(_M_access()); }

    _Nocopy_types _M_unused;
    char _M_pod_data[sizeof(_Nocopy_types)];
};

看std::_Function_base之前先看一个重要的联合体_Any_data,这个在前面出现很多次了,但是一直没有介绍一下它究竟是个什么东西,下面简单分析一下:

3.4、std::_Function_base解析

std::_Function_base的实现位于libstdc++-v3\include\std\functional中

class _Function_base
{
public:
    static const std::size_t _M_max_size = sizeof(_Nocopy_types);
    static const std::size_t _M_max_align = __alignof__(_Nocopy_types);

    template<typename _Functor>
    class _Base_manager
    {
    protected:
        static const bool __stored_locally =
            (__is_location_invariant<_Functor>::value
            && sizeof(_Functor) <= _M_max_size
            && __alignof__(_Functor) <= _M_max_align
            && (_M_max_align % __alignof__(_Functor) == 0));

        typedef integral_constant<bool, __stored_locally> _Local_storage;

        static _Functor* _M_get_pointer(const _Any_data& __source)
        {
            const _Functor* __ptr = __stored_locally? std::__addressof(__source._M_access<_Functor>()) : __source._M_access<_Functor*>();
            return const_cast<_Functor*>(__ptr);
        }

        static void _M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
        {
            new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
        }

        static void _M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
        {
            __dest._M_access<_Functor*>() = new _Functor(*__source._M_access<_Functor*>());
        }

        static void _M_destroy(_Any_data& __victim, true_type)
        {
            __victim._M_access<_Functor>().~_Functor();
        }

        static void _M_destroy(_Any_data& __victim, false_type)
        {
            delete __victim._M_access<_Functor*>();
        }

    public:
        static bool _M_manager(_Any_data& __dest, const _Any_data& __source, _Manager_operation __op)
        {
            switch (__op)
            {
                case __get_functor_ptr:
                    __dest._M_access<_Functor*>() = _M_get_pointer(__source);
                    break;

                case __clone_functor:
                    _M_clone(__dest, __source, _Local_storage());
                    break;

                case __destroy_functor:
                    _M_destroy(__dest, _Local_storage());
                    break;
            }
            return false;
        }

        static void _M_init_functor(_Any_data& __functor, _Functor&& __f)
        { _M_init_functor(__functor, std::move(__f), _Local_storage()); }

        template<typename _Signature>
        static bool _M_not_empty_function(const function<_Signature>& __f)
        { return static_cast<bool>(__f); }

        template<typename _Tp>
        static bool _M_not_empty_function(_Tp* const& __fp)
        { return __fp; }

        template<typename _Class, typename _Tp>
        static bool _M_not_empty_function(_Tp _Class::* const& __mp)
        { return __mp; }

        template<typename _Tp>
        static bool _M_not_empty_function(const _Tp&)
        { return true; }

    private:
        static void _M_init_functor(_Any_data& __functor, _Functor&& __f, true_type)
        { new (__functor._M_access()) _Functor(std::move(__f)); }

        static void _M_init_functor(_Any_data& __functor, _Functor&& __f, false_type)
        { __functor._M_access<_Functor*>() = new _Functor(std::move(__f)); }
    };

    template<typename _Functor>
    class _Ref_manager : public _Base_manager<_Functor*>
    {
        typedef _Function_base::_Base_manager<_Functor*> _Base;

    public:
        static bool _M_manager(_Any_data& __dest, const _Any_data& __source, _Manager_operation __op)
        {
            switch (__op)
            {
                case __get_functor_ptr:
                    __dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
                    return is_const<_Functor>::value;
                    break;

                default:
                    _Base::_M_manager(__dest, __source, __op);
            }
            return false;
        }

        static void _M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
        {
            _Base::_M_init_functor(__functor, std::__addressof(__f.get()));
        }
    };

    _Function_base() : _M_manager(0) { }

    ~_Function_base()
    {
        if (_M_manager)
            _M_manager(_M_functor, _M_functor, __destroy_functor);
    }

    bool _M_empty() const { return !_M_manager; }

    typedef bool (*_Manager_type)(_Any_data&, const _Any_data&, _Manager_operation);

    _Any_data     _M_functor;
    _Manager_type _M_manager;
};

从源代码中可以看出以下几点信息:

4、总结

本文先是简单介绍了std::function的用途(对C++中各种可调用实体进行封装),然后通过对源码进行详细分析,我们知道了std::function是如何实现对可调用实体进行封装的,源码内容会比较复杂,但是其中的设计思路是很值得我们学习借鉴的,尤其是与std::reference_wrapper和std::mem_fn配合的那部分代码更是精妙绝伦。

到此,相信大家对“C++11中std::function的用法”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

推荐阅读:
  1. constexpr 指定符(C++11 起)
  2. atomic怎么在c++11项目中使用

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

c++11 std::function

上一篇:javascript中求最大值语句怎么写

下一篇:python清洗文件中数据的方法

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》