C++使用LeetCode实现独一无二的二叉搜索树

发布时间:2021-07-20 09:11:08 作者:小新
来源:亿速云 阅读:104

这篇文章主要介绍C++使用LeetCode实现独一无二的二叉搜索树,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

[LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树

Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n?

Example:

Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's:

1         3     3      2      1
\       /     /      / \      \
3     2     1      1   3      2
/     /       \                 \
2     1         2                 3

这道题实际上是 卡塔兰数 Catalan Numbe 的一个例子,如果对卡塔兰数不熟悉的童鞋可能真不太好做。话说其实我也是今天才知道的好嘛 -.-|||,为啥我以前都不知道捏?!为啥卡塔兰数不像斐波那契数那样人尽皆知呢,是我太孤陋寡闻么?!不过今天知道也不晚,不断的学习新的东西,这才是刷题的意义所在嘛! 好了,废话不多说了,赶紧回到题目上来吧。我们先来看当 n = 1 的情况,只能形成唯一的一棵二叉搜索树,n分别为 1,2,3 的情况如下所示:

                    1                        n = 1

                2        1                   n = 2
/          \
1            2

1         3     3      2      1           n = 3
\       /     /      / \      \
3     2     1      1   3      2
/     /       \                 \
2     1         2                 3

就跟斐波那契数列一样,我们把 n = 0 时赋为1,因为空树也算一种二叉搜索树,那么 n = 1 时的情况可以看做是其左子树个数乘以右子树的个数,左右子树都是空树,所以1乘1还是1。那么 n = 2 时,由于1和2都可以为根,分别算出来,再把它们加起来即可。n = 2 的情况可由下面式子算出(这里的 dp[i] 表示当有i个数字能组成的 BST 的个数):

dp[2] =  dp[0] * dp[1]   (1为根的情况,则左子树一定不存在,右子树可以有一个数字)

    + dp[1] * dp[0]    (2为根的情况,则左子树可以有一个数字,右子树一定不存在)

同理可写出 n = 3 的计算方法:

dp[3] =  dp[0] * dp[2]   (1为根的情况,则左子树一定不存在,右子树可以有两个数字)

    + dp[1] * dp[1]    (2为根的情况,则左右子树都可以各有一个数字)

      + dp[2] * dp[0]    (3为根的情况,则左子树可以有两个数字,右子树一定不存在)

我们根据以上的分析,可以写出代码如下:

解法一:

class Solution {
public:
    int numTrees(int n) {
        vector<int> dp(n + 1);
        dp[0] = dp[1] = 1;
        for (int i = 2; i <= n; ++i) {
            for (int j = 0; j < i; ++j) {
                dp[i] += dp[j] * dp[i - j - 1];
            }
        }
        return dp[n];
    }
};

由卡特兰数的递推式还可以推导出其通项公式,即 C(2n,n)/(n+1),表示在 2n 个数字中任取n个数的方法再除以 n+1,只要你还没有忘记高中的排列组合的知识,就不难写出下面的代码,注意在相乘的时候为了防止整型数溢出,要将结果 res 定义为长整型,参见代码如下:

解法二:

class Solution {
public:
    int numTrees(int n) {
        long res = 1;
        for (int i = n + 1; i <= 2 * n; ++i) {
            res = res * i / (i - n);
        }
        return res / (n + 1);
    }
};

以上是“C++使用LeetCode实现独一无二的二叉搜索树”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!

推荐阅读:
  1. C++怎么实现独一无二的二叉搜索树
  2. LeetCode如何实现二叉搜索树的范围和

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

c++ leetcode

上一篇:C++中LeetCode实现单独数字的示例分析

下一篇:怎么修改gazebo物理参数

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》