如何实现Dijkstra算法最短路径

发布时间:2021-08-12 12:34:49 作者:小新
来源:亿速云 阅读:147

小编给大家分享一下如何实现Dijkstra算法最短路径,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

1、最短路径问题介绍

问题解释:
从图中的某个顶点出发到达另外一个顶点的所经过的边的权重和最小的一条路径,称为最短路径

解决问题的算法:

这篇博客,我们就对Dijkstra算法来做一个详细的介绍

2、Dijkstra算法介绍

算法特点:

3、Dijkstra算法示例演示

下面我求下图,从顶点v1到其他各个顶点的最短路径

如何实现Dijkstra算法最短路径

首先第一步,我们先声明一个dis数组,该数组初始化的值为:

如何实现Dijkstra算法最短路径

我们的顶点集T的初始化为:T={v1}

既然是求 v1顶点到其余各个顶点的最短路程,那就先找一个离 1 号顶点最近的顶点。通过数组 dis 可知当前离v1顶点最近是 v3顶点。当选择了 2 号顶点后,dis[2](下标从0开始)的值就已经从“估计值”变为了“确定值”,即 v1顶点到 v3顶点的最短路程就是当前 dis[2]值。将V3加入到T中。
为什么呢?因为目前离 v1顶点最近的是 v3顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得 v1顶点到 v3顶点的路程进一步缩短了。因为 v1顶点到其它顶点的路程肯定没有 v1到 v3顶点短.

OK,既然确定了一个顶点的最短路径,下面我们就要根据这个新入的顶点V3会有出度,发现以v3 为弧尾的有: < v3,v4 >,那么我们看看路径:v1–v3–v4的长度是否比v1–v4短,其实这个已经是很明显的了,因为dis[3]代表的就是v1–v4的长度为无穷大,而v1–v3–v4的长度为:10+50=60,所以更新dis[3]的值,得到如下结果:

如何实现Dijkstra算法最短路径

因此 dis[3]要更新为 60。这个过程有个专业术语叫做“松弛”。即 v1顶点到 v4顶点的路程即 dis[3],通过 < v3,v4> 这条边松弛成功。这便是 Dijkstra 算法的主要思想:通过“边”来松弛v1顶点到其余各个顶点的路程。

然后,我们又从除dis[2]和dis[0]外的其他值中寻找最小值,发现dis[4]的值最小,通过之前是解释的原理,可以知道v1到v5的最短距离就是dis[4]的值,然后,我们把v5加入到集合T中,然后,考虑v5的出度是否会影响我们的数组dis的值,v5有两条出度:< v5,v4>和 < v5,v6>,然后我们发现:v1–v5–v4的长度为:50,而dis[3]的值为60,所以我们要更新dis[3]的值.另外,v1-v5-v6的长度为:90,而dis[5]为100,所以我们需要更新dis[5]的值。更新后的dis数组如下图:

如何实现Dijkstra算法最短路径

然后,继续从dis中选择未确定的顶点的值中选择一个最小的值,发现dis[3]的值是最小的,所以把v4加入到集合T中,此时集合T={v1,v3,v5,v4},然后,考虑v4的出度是否会影响我们的数组dis的值,v4有一条出度:< v4,v6>,然后我们发现:v1–v5–v4–v6的长度为:60,而dis[5]的值为90,所以我们要更新dis[5]的值,更新后的dis数组如下图:

如何实现Dijkstra算法最短路径

然后,我们使用同样原理,分别确定了v6和v2的最短路径,最后dis的数组的值如下:

如何实现Dijkstra算法最短路径

因此,从图中,我们可以发现v1-v2的值为:∞,代表没有路径从v1到达v2。所以我们得到的最后的结果为:

起点  终点    最短路径    长度
v1    v2     无          ∞    
      v3     {v1,v3}    10
      v4     {v1,v5,v4}  50
      v5     {v1,v5}    30
      v6     {v1,v5,v4,v6} 60

4、Dijkstra算法的代码实现(c++)

/************************************************************/
/*                程序作者:Willam                          */
/*                程序完成时间:2017/3/8                    */
/*                有任何问题请联系:2930526477@qq.com       */
/************************************************************/
//@尽量写出完美的程序

#pragma once
//#pragma once是一个比较常用的C/C++杂注,
//只要在头文件的最开始加入这条杂注,
//就能够保证头文件只被编译一次。

#include<iostream>
#include<string>
using namespace std;

/*
本程序是使用Dijkstra算法实现求解最短路径的问题
采用的邻接矩阵来存储图
*/
//记录起点到每个顶点的最短路径的信息
struct Dis {
    string path;
    int value;
    bool visit;
    Dis() {
        visit = false;
        value = 0;
        path = "";
    }
};

class Graph_DG {
private:
    int vexnum;   //图的顶点个数
    int edge;     //图的边数
    int **arc;   //邻接矩阵
    Dis * dis;   //记录各个顶点最短路径的信息
public:
    //构造函数
    Graph_DG(int vexnum, int edge);
    //析构函数
    ~Graph_DG();
    // 判断我们每次输入的的边的信息是否合法
    //顶点从1开始编号
    bool check_edge_value(int start, int end, int weight);
    //创建图
    void createGraph();
    //打印邻接矩阵
    void print();
    //求最短路径
    void Dijkstra(int begin);
    //打印最短路径
    void print_path(int);
};
#include"Dijkstra.h"

//构造函数
Graph_DG::Graph_DG(int vexnum, int edge) {
    //初始化顶点数和边数
    this->vexnum = vexnum;
    this->edge = edge;
    //为邻接矩阵开辟空间和赋初值
    arc = new int*[this->vexnum];
    dis = new Dis[this->vexnum];
    for (int i = 0; i < this->vexnum; i++) {
        arc[i] = new int[this->vexnum];
        for (int k = 0; k < this->vexnum; k++) {
            //邻接矩阵初始化为无穷大
                arc[i][k] = INT_MAX;
        }
    }
}
//析构函数
Graph_DG::~Graph_DG() {
    delete[] dis;
    for (int i = 0; i < this->vexnum; i++) {
        delete this->arc[i];
    }
    delete arc;
}

// 判断我们每次输入的的边的信息是否合法
//顶点从1开始编号
bool Graph_DG::check_edge_value(int start, int end, int weight) {
    if (start<1 || end<1 || start>vexnum || end>vexnum || weight < 0) {
        return false;
    }
    return true;
}

void Graph_DG::createGraph() {
    cout << "请输入每条边的起点和终点(顶点编号从1开始)以及其权重" << endl;
    int start;
    int end;
    int weight;
    int count = 0;
    while (count != this->edge) {
        cin >> start >> end >> weight;
        //首先判断边的信息是否合法
        while (!this->check_edge_value(start, end, weight)) {
            cout << "输入的边的信息不合法,请重新输入" << endl;
            cin >> start >> end >> weight;
        }
        //对邻接矩阵对应上的点赋值
        arc[start - 1][end - 1] = weight;
        //无向图添加上这行代码
        //arc[end - 1][start - 1] = weight;
        ++count;
    }
}

void Graph_DG::print() {
    cout << "图的邻接矩阵为:" << endl;
    int count_row = 0; //打印行的标签
    int count_col = 0; //打印列的标签
    //开始打印
    while (count_row != this->vexnum) {
        count_col = 0;
        while (count_col != this->vexnum) {
            if (arc[count_row][count_col] == INT_MAX)
                cout << "∞" << " ";
            else
            cout << arc[count_row][count_col] << " ";
            ++count_col;
        }
        cout << endl;
        ++count_row;
    }
}
void Graph_DG::Dijkstra(int begin){
    //首先初始化我们的dis数组
    int i;
    for (i = 0; i < this->vexnum; i++) {
        //设置当前的路径
        dis[i].path = "v" + to_string(begin) + "-->v" + to_string(i + 1);
        dis[i].value = arc[begin - 1][i];
    }
    //设置起点的到起点的路径为0
    dis[begin - 1].value = 0;
    dis[begin - 1].visit = true;

    int count = 1;
    //计算剩余的顶点的最短路径(剩余this->vexnum-1个顶点)
    while (count != this->vexnum) {
        //temp用于保存当前dis数组中最小的那个下标
        //min记录的当前的最小值
        int temp=0;
        int min = INT_MAX;
        for (i = 0; i < this->vexnum; i++) {
            if (!dis[i].visit && dis[i].value<min) {
                min = dis[i].value;
                temp = i;
            }
        }
        //cout << temp + 1 << "  "<<min << endl;
        //把temp对应的顶点加入到已经找到的最短路径的集合中
        dis[temp].visit = true;
        ++count;
        for (i = 0; i < this->vexnum; i++) {
            //注意这里的条件arc[temp][i]!=INT_MAX必须加,不然会出现溢出,从而造成程序异常
            if (!dis[i].visit && arc[temp][i]!=INT_MAX && (dis[temp].value + arc[temp][i]) < dis[i].value) {
                //如果新得到的边可以影响其他为访问的顶点,那就就更新它的最短路径和长度
                dis[i].value = dis[temp].value + arc[temp][i];
                dis[i].path = dis[temp].path + "-->v" + to_string(i + 1);
            }
        }
    }

}
void Graph_DG::print_path(int begin) {
    string str;
    str = "v" + to_string(begin);
    cout << "以"<<str<<"为起点的图的最短路径为:" << endl;
    for (int i = 0; i != this->vexnum; i++) {
        if(dis[i].value!=INT_MAX)
        cout << dis[i].path << "=" << dis[i].value << endl;
        else {
            cout << dis[i].path << "是无最短路径的" << endl;
        }
    }
}
#include"Dijkstra.h"


//检验输入边数和顶点数的值是否有效,可以自己推算为啥:
//顶点数和边数的关系是:((Vexnum*(Vexnum - 1)) / 2) < edge
bool check(int Vexnum, int edge) {
    if (Vexnum <= 0 || edge <= 0 || ((Vexnum*(Vexnum - 1)) / 2) < edge)
        return false;
    return true;
}
int main() {
    int vexnum; int edge;

    cout << "输入图的顶点个数和边的条数:" << endl;
    cin >> vexnum >> edge;
    while (!check(vexnum, edge)) {
        cout << "输入的数值不合法,请重新输入" << endl;
        cin >> vexnum >> edge;
    }
    Graph_DG graph(vexnum, edge);
    graph.createGraph();
    graph.print();
    graph.Dijkstra(1);
    graph.print_path(1);
    system("pause");
    return 0;
}

输入:

6 8

1 3 10

1 5 30

1 6 100

2 3 5

3 4 50

4 6 10

5 6 60

5 4 20

输出: 

如何实现Dijkstra算法最短路径

从输出可以看出,程序的结果和我们之前手动计算的结果是一样的。

以上是“如何实现Dijkstra算法最短路径”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!

推荐阅读:
  1. python如何用Dijkstra算法实现最短路径?
  2. C++如何实现最短路径之Dijkstra算法

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

dijkstra

上一篇:C#如何解决跨线程调用窗体控件引发的线程安全问题

下一篇:iOS中ptrace反调试与汇编调用系统的示例分析

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》