如何解决调用Process.waitfor导致的进程挂起问题

发布时间:2021-12-14 10:07:21 作者:小新
来源:亿速云 阅读:391

这篇文章主要介绍如何解决调用Process.waitfor导致的进程挂起问题,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

问题背景

如果要在Java中调用shell脚本时,可以使用Runtime.exec或ProcessBuilder.start。它们都会返回一个Process对象,通过这个Process可以对获取脚本执行的输出,然后在Java中进行相应处理。

例如,下面的代码:

		try 
		{
			Process process = Runtime.getRuntime().exec(cmd);			
			process.waitFor();                        
                        //do something ...
		} 
		catch (Exception e) 
		{			
			e.printStackTrace();
		}

通常,安全编码规范中都会指出:使用Process.waitfor的时候,可能导致进程阻塞,甚至死锁。 那么这句应该怎么理解呢?用个实际的例子说明下。

问题描述

使用Java代码调用shell脚本,执行后会发现Java进程和Shell进程都会挂起,无法结束。

Java代码 processtest.java

		try 
		{
			Process process = Runtime.getRuntime().exec(cmd);
			System.out.println("start run cmd=" + cmd);
			
			process.waitFor();
			System.out.println("finish run cmd=" + cmd);
		} 
		catch (Exception e) 
		{			
			e.printStackTrace();
		}

被调用的Shell脚本doecho.sh

#!/bin/bash
for((i=0; ;i++))
do    
    echo -n "0123456789"
    echo $i >> count.log
done

挂起原因

解决方法

基于上述分析,只要主进程在waitfor之前,能不断处理缓冲区中的数据就可以。因为,我们可以再waitfor之前,单独启两个额外的线程,分别用于处理InputStream和ErrorStream就可以。实例代码如下:

		try 
		{
			final Process process = Runtime.getRuntime().exec(cmd);
			System.out.println("start run cmd=" + cmd);
			
			//处理InputStream的线程
			new Thread()
			{
				@Override
				public void run()
				{
					BufferedReader in = new BufferedReader(new InputStreamReader(process.getInputStream())); 
					String line = null;
					
					try 
					{
						while((line = in.readLine()) != null)
						{
							System.out.println("output: " + line);
						}
					} 
					catch (IOException e) 
					{						
						e.printStackTrace();
					}
					finally
					{
						try 
						{
							in.close();
						} 
						catch (IOException e) 
						{
							e.printStackTrace();
						}
					}
				}
			}.start();
			
			new Thread()
			{
				@Override
				public void run()
				{
					BufferedReader err = new BufferedReader(new InputStreamReader(process.getErrorStream())); 
					String line = null;
					
					try 
					{
						while((line = err.readLine()) != null)
						{
							System.out.println("err: " + line);
						}
					} 
					catch (IOException e) 
					{						
						e.printStackTrace();
					}
					finally
					{
						try 
						{
							err.close();
						} 
						catch (IOException e) 
						{
							e.printStackTrace();
						}
					}
				}
			}.start();
			
			process.waitFor();
			System.out.println("finish run cmd=" + cmd);
		} 
		catch (Exception e) 
		{			
			e.printStackTrace();
		}

JDK上的说明

By default, the created subprocess does not have its own terminal or console.

All its standard I/O (i.e. stdin, stdout, stderr) operations will be redirected to the parent process, where they can be accessed via the streams obtained using the methods getOutputStream(), getInputStream(), and getErrorStream().

The parent process uses these streams to feed input to and get output from the subprocess.

Because some native platforms only provide limited buffer size for standard input and output streams, failure to promptly write the input stream or read the output stream of the subprocess may cause the subprocess to block, or even deadlock.

从JDK的说明中可以看出两点:

背后的故事

要回答上面的问题可以从系统的层面尝试分析。

首先通过ps命令可以看到,在linux上多出了两个进程:一个Java进程、一个shell进程,且shell是java的子进程。

如何解决调用Process.waitfor导致的进程挂起问题

然后,可以看到shell进程的状态显示为pipe_w。我刚开始以为pipe_w表示pipe_write。进一步查看/proc/pid/wchan发现pipe_w其实表示为pipe_wait。通常/proc/pid/wchan表示一个内存地址或进程正在执行的方法名称。因此,这似乎表明该进程在操作pipe时发生了等待,从而被挂起。我们知道pipe是IPC的一种,通常用于父子进程之间通信。这样我们可以猜测:可能是父子进程之间通过pipe通信的时候出现了阻塞。

另外,观察父子进程的fd信息,即/proc/pid/fd。可以看到子进程的0/1/2(即:stdin/stdout/stderr)分别被重定向到了三个pipe文件;父亲进程中对应的也有对着三个pipe文件的引用。

如何解决调用Process.waitfor导致的进程挂起问题

综上所述,这个过程应该是这样的:子进程不断向pipe中写数据,而父进程一直不读取pipe中的数据,导致pipe被塞满,子进程无法继续写入,所以出现pipe_wait的状态。那么pipe到底有多大呢?

测试pipe的大小

因为我已经在doecho.sh的脚步中记录了打印了字符数,查看count.log就可以知道子进程最终发送了多少数据。在子进程挂起了,count.log的数据一致保持在6543不变。故,当前子进程向pipe中写入6543*10=65430bytes时,出现进程挂起。65536-65430=106byte即距离64K差了106bytes。

如何解决调用Process.waitfor导致的进程挂起问题

换另外的测试方式,每次写入1k,记录总共可以写入多少。进程代码如test_pipe_size.sh所示。测试结果为64K。两次结果相差了106byte,那个这个pipe到底多大?

Linux上pipe分析

最直接的方式就是看源码。Pipe的实现代码主要在linux/fs/pipe.c中,我们主要看pipe_wait方法。

 pipe_read(struct kiocb *iocb, struct iov_iter *to)
 {
         size_t total_len = iov_iter_count(to);
         struct file *filp = iocb->ki_filp;
         struct pipe_inode_info *pipe = filp->private_data;
         int do_wakeup;
         ssize_t ret;
 
         /* Null read succeeds. */
         if (unlikely(total_len == 0))
                 return 0;
 
         do_wakeup = 0;
         ret = 0;
         __pipe_lock(pipe);
         for (;;) {
                 int bufs = pipe->nrbufs;
                 if (bufs) {
                         int curbuf = pipe->curbuf;
                         struct pipe_buffer *buf = pipe->bufs + curbuf;
                         const struct pipe_buf_operations *ops = buf->ops;
                         size_t chars = buf->len;
                         size_t written;
                         int error;
 
                         if (chars > total_len)
                                 chars = total_len;
 
                         error = ops->confirm(pipe, buf);
                         if (error) {
                                 if (!ret)
                                         ret = error;
                                 break;
                         }
 
                         written = copy_page_to_iter(buf->page, buf->offset, chars, to);
                         if (unlikely(written < chars)) {
                                 if (!ret)
                                         ret = -EFAULT;
                                 break;
                         }
                         ret += chars;
                         buf->offset += chars;
                         buf->len -= chars;
 
                         /* Was it a packet buffer? Clean up and exit */
                         if (buf->flags & PIPE_BUF_FLAG_PACKET) {
                                 total_len = chars;
                                 buf->len = 0;
                         }
 
                         if (!buf->len) {
                                 buf->ops = NULL;
                                 ops->release(pipe, buf);
                                 curbuf = (curbuf + 1) & (pipe->buffers - 1);
                                 pipe->curbuf = curbuf;
                                 pipe->nrbufs = --bufs;
                                 do_wakeup = 1;
                         }
                         total_len -= chars;
                         if (!total_len)
                                 break;  /* common path: read succeeded */
                 }
                 if (bufs)       /* More to do? */
                         continue;
                 if (!pipe->writers)
                         break;
                 if (!pipe->waiting_writers) {
                         /* syscall merging: Usually we must not sleep
                          * if O_NONBLOCK is set, or if we got some data.
                          * But if a writer sleeps in kernel space, then
                          * we can wait for that data without violating POSIX.
                          */
                         if (ret)
                                 break;
                         if (filp->f_flags & O_NONBLOCK) {
                                 ret = -EAGAIN;
                                 break;
                         }
                 }
                 if (signal_pending(current)) {
                         if (!ret)
                                 ret = -ERESTARTSYS;
                         break;
                 }
                 if (do_wakeup) {
                         wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
                 }
                 pipe_wait(pipe);
         }
         __pipe_unlock(pipe);
 
         /* Signal writers asynchronously that there is more room. */
         if (do_wakeup) {
                 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
         }
         if (ret > 0)
                 file_accessed(filp);
         return ret;
 }

可以看到Pipe被组织成环状结构,即一个循环链表。链表中的元素为struct pipe_buffer的结构,每个pipe_buffer对于一个page。链表中共有16个元素,即pipe buffer的总大小为16*page。如果page大小为4K,那么pipe buffer的总大小应该为16*4K=64K。

如何解决调用Process.waitfor导致的进程挂起问题

以上是“如何解决调用Process.waitfor导致的进程挂起问题”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!

推荐阅读:
  1. 大量postdrop进程挂死或登录bash 挂起的分析与解决
  2. Robotium中调用getActivity()方法导致程序挂起的研究浅析

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

process waitfor

上一篇:SpringBoot + Redis怎么解决重复提交问题

下一篇:Flutter将整个App变为灰色的方法是什么

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》