Linux调试器中处理变量的过程是什么

发布时间:2022-02-11 09:32:03 作者:iii
来源:亿速云 阅读:108

这篇文章主要讲解了“Linux调试器中处理变量的过程是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Linux调试器中处理变量的过程是什么”吧!

Linux调试器中处理变量的过程是什么

在开始之前,请确保你使用的 libelfin 版本是我分支上的 fbreg。这包含了一些 hack 来支持获取当前堆栈帧的基址并评估位置列表,这些都不是由原生的 libelfin 提供的。你可能需要给 GCC 传递 -gdwarf-2 参数使其生成兼容的 DWARF 信息。但是在实现之前,我将详细说明 DWARF 5 最新规范中的位置编码方式。

DWARF 位置

某一给定时刻的内存中变量的位置使用 DW_AT_location 属性编码在 DWARF 信息中。位置描述可以是单个位置描述、复合位置描述或位置列表。

根据位置描述的种类,DW_AT_location 以三种不同的方式进行编码。exprloc 编码简单和复合的位置描述。它们由一个字节长度组成,后跟一个 DWARF 表达式或位置描述。loclist 和 loclistptr 的编码位置列表,它们在 .debug_loclists 部分中提供索引或偏移量,该部分描述了实际的位置列表。

DWARF 表达式

使用 DWARF 表达式计算变量的实际位置。这包括操作堆栈值的一系列操作。有很多 DWARF 操作可用,所以我不会详细解释它们。相反,我会从每一个表达式中给出一些例子,给你一个可用的东西。另外,不要害怕这些;libelfin将为我们处理所有这些复杂性。

DWARF 类型

DWARF 类型的表示需要足够强大来为调试器用户提供有用的变量表示。用户经常希望能够在应用程序级别进行调试,而不是在机器级别进行调试,并且他们需要了解他们的变量正在做什么。

DWARF 类型与大多数其他调试信息一起编码在 DIE 中。它们可以具有指示其名称、编码、大小、字节等的属性。无数的类型标签可用于表示指针、数组、结构体、typedef 以及 C 或 C++ 程序中可以看到的任何其他内容。

以这个简单的结构体为例:

struct test{
int i;float j;
int k[42];test* next;
};

这个结构体的父 DIE 是这样的:

 DW_TAG_structure_type
DW_AT_name "test"DW_AT_byte_size 0x000000b8
DW_AT_decl_file 0x00000001 test.cpp
DW_AT_decl_line 0x00000001

上面说的是我们有一个叫做 test 的结构体,大小为 0xb8,在 test.cpp 的第 1 行声明。接下来有许多描述成员的子 DIE。

 DW_TAG_member
DW_AT_name "i"DW_AT_type 
DW_AT_decl_file 0x00000001 test.cpp
DW_AT_decl_line 0x00000002
DW_AT_data_member_location 0
 DW_TAG_member
DW_AT_name "j"DW_AT_type 
DW_AT_decl_file 0x00000001 test.cpp
DW_AT_decl_line 0x00000003
DW_AT_data_member_location 4
 DW_TAG_member
DW_AT_name "k"DW_AT_type 
DW_AT_decl_file 0x00000001 test.cpp
DW_AT_decl_line 0x00000004
DW_AT_data_member_location 8
 DW_TAG_member
DW_AT_name "next"DW_AT_type 
DW_AT_decl_file 0x00000001 test.cpp
DW_AT_decl_line 0x00000005
DW_AT_data_member_location 176(as signed = -80)

每个成员都有一个名称、一个类型(它是一个 DIE 偏移量)、一个声明文件和行,以及一个指向其成员所在的结构体的字节偏移。其类型指向如下。

 DW_TAG_base_type
DW_AT_name "int"DW_AT_encoding DW_ATE_signed
DW_AT_byte_size 0x00000004
 DW_TAG_base_type
DW_AT_name "float"DW_AT_encoding DW_ATE_float
DW_AT_byte_size 0x00000004
 DW_TAG_array_type
DW_AT_type 
 DW_TAG_subrange_type
DW_AT_type 
DW_AT_count 0x0000002a
 DW_TAG_base_type
DW_AT_name "sizetype"DW_AT_byte_size 0x00000008
DW_AT_encoding DW_ATE_unsigned
 DW_TAG_pointer_type
DW_AT_type

如你所见,我笔记本电脑上的 int 是一个 4 字节的有符号整数类型,float是一个 4 字节的浮点数。整数数组类型通过指向 int 类型作为其元素类型,sizetype(可以认为是 size_t)作为索引类型,它具有 2a 个元素。 test * 类型是 DW_TAG_pointer_type,它引用 test DIE。

实现简单的变量读取器

如上所述,libelfin 将为我们处理大部分复杂性。但是,它并没有实现用于表示可变位置的所有方法,并且在我们的代码中处理这些将变得非常复杂。因此,我现在选择只支持 exprloc。请根据需要添加对更多类型表达式的支持。如果你真的有勇气,请提交补丁到 libelfin 中来帮助完成必要的支持!

处理变量主要是将不同部分定位在存储器或寄存器中,读取或写入与之前一样。为了简单起见,我只会告诉你如何实现读取。

首先我们需要告诉 libelfin 如何从我们的进程中读取寄存器。我们创建一个继承自 expr_context 的类并使用 ptrace 来处理所有内容:

class ptrace_expr_context : public dwarf::expr_context {
public:
ptrace_expr_context (pid_t pid) : m_pid{pid} {}
dwarf::taddr reg (unsigned regnum) override {return get_register_value_from_dwarf_register(m_pid, regnum);
}
dwarf::taddr pc() override {
struct user_regs_struct regs;
ptrace(PTRACE_GETREGS, m_pid, nullptr, &regs);return regs.rip;
}
dwarf::taddr deref_size (dwarf::taddr address, unsigned size) override {
//TODO take into account sizereturn ptrace(PTRACE_PEEKDATA, m_pid, address, nullptr);
}
private:
pid_t m_pid;
};

读取将由我们 debugger 类中的 read_variables 函数处理:

void debugger::read_variables() {
using namespace dwarf;
auto func = get_function_from_pc(get_pc());
//...
}

我们上面做的第一件事是找到我们目前进入的函数,然后我们需要循环访问该函数中的条目来寻找变量:

for (const auto& die : func) {if (die.tag == DW_TAG::variable) {
//...
}
}

我们通过查找 DIE 中的 DW_AT_location 条目获取位置信息:

auto loc_val = die[DW_AT::location];

接着我们确保它是一个 exprloc,并请求 libelfin 来评估我们的表达式:

if (loc_val.get_type() == value::type::exprloc) {ptrace_expr_context context {m_pid};auto result = loc_val.as_exprloc().evaluate(&context);

现在我们已经评估了表达式,我们需要读取变量的内容。它可以在内存或寄存器中,因此我们将处理这两种情况:

switch (result.location_type) {case expr_result::type::address:
{
auto value = read_memory(result.value);
std::cout " (0x" ") = "
break;
}case expr_result::type::reg:
{
auto value = get_register_value_from_dwarf_register(m_pid, result.value);
std::cout " (reg " ") = "
break;
}
default:
throw std::runtime_error{"Unhandled variable location"};
}

你可以看到,我根据变量的类型,打印输出了值而没有解释。希望通过这个代码,你可以看到如何支持编写变量,或者用给定的名字搜索变量。

最后我们可以将它添加到我们的命令解析器中:

else if(is_prefix(command, "variables")) {
read_variables();
}

测试一下

编写一些具有一些变量的小功能,不用优化并带有调试信息编译它,然后查看是否可以读取变量的值。尝试写入存储变量的内存地址,并查看程序改变的行为。

感谢各位的阅读,以上就是“Linux调试器中处理变量的过程是什么”的内容了,经过本文的学习后,相信大家对Linux调试器中处理变量的过程是什么这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!

推荐阅读:
  1. PostgreSQL的查询处理过程是什么
  2. PostgreSQL中GetSnapshotData的处理过程是什么

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

linux

上一篇:如何解决Win7任务栏缩略图不见的问题

下一篇:Linux中ifup命令有什么用

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》