您好,登录后才能下订单哦!
这篇文章主要介绍“go RWMutex如何实现”,在日常操作中,相信很多人在go RWMutex如何实现问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”go RWMutex如何实现”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
go 里面的 rwlock 是 write preferred 的,可以避免写锁饥饿。
读锁和写锁按照先来后到的规则持有锁,一旦有协程持有了写锁,后面的协程只能在写锁被释放后才能得到读锁。
同样,一旦有 >= 1 个协程写到了读锁,只有等这些读锁全部释放后,后面的协程才能拿到写锁。
RWMutex 总体上是通过: 普通锁和条件变量来实现的
type RWMutex struct { w Mutex // held if there are pending writers writerSem uint32 // semaphore for writers to wait for completing readers readerSem uint32 // semaphore for readers to wait for completing writers readerCount int32 // number of pending readers readerWait int32 // number of departing readers }
func (rw *RWMutex) Lock() { // First, resolve competition with other writers. rw.w.Lock() // Announce to readers there is a pending writer. r := atomic.AddInt32(&rw.readerCount, -rwmutexMaxReaders) + rwmutexMaxReaders // Wait for active readers. if r != 0 && atomic.AddInt32(&rw.readerWait, r) != 0 { runtime_SemacquireMutex(&rw.writerSem, false, 0) } }
const rwmutexMaxReaders = 1 << 30 func (rw *RWMutex) Unlock() { // Announce to readers there is no active writer. r := atomic.AddInt32(&rw.readerCount, rwmutexMaxReaders) // Unblock blocked readers, if any. for i := 0; i < int(r); i++ { runtime_Semrelease(&rw.readerSem, false, 0) } // Allow other writers to proceed. rw.w.Unlock() }
func (rw *RWMutex) RLock() { if atomic.AddInt32(&rw.readerCount, 1) < 0 { // A writer is pending, wait for it. runtime_SemacquireMutex(&rw.readerSem, false, 0) } }
func (rw *RWMutex) RUnlock() { if r := atomic.AddInt32(&rw.readerCount, -1); r < 0 { // Outlined slow-path to allow the fast-path to be inlined rw.rUnlockSlow(r) } } func (rw *RWMutex) rUnlockSlow(r int32) { // A writer is pending. if atomic.AddInt32(&rw.readerWait, -1) == 0 { // The last reader unblocks the writer. runtime_Semrelease(&rw.writerSem, false, 1) } }
func (rw *RWMutex) RLock() { if atomic.AddInt32(&rw.readerCount, 1) < 0 { // A writer is pending, wait for it. runtime_SemacquireMutex(&rw.readerSem, false, 0) } }
拿读锁时,仅仅会增加 readerCount,因此读锁之间是可以正常并发的
func (rw *RWMutex) Lock() { // First, resolve competition with other writers. rw.w.Lock() // Announce to readers there is a pending writer. r := atomic.AddInt32(&rw.readerCount, -rwmutexMaxReaders) + rwmutexMaxReaders // Wait for active readers. if r != 0 && atomic.AddInt32(&rw.readerWait, r) != 0 { runtime_SemacquireMutex(&rw.writerSem, false, 0) } }
拿写锁时,会获取 w.Lock,自然能保证同一时间只会有一把写锁
func (rw *RWMutex) Lock() { // First, resolve competition with other writers. rw.w.Lock() // Announce to readers there is a pending writer. r := atomic.AddInt32(&rw.readerCount, -rwmutexMaxReaders) + rwmutexMaxReaders // Wait for active readers. if r != 0 && atomic.AddInt32(&rw.readerWait, r) != 0 { runtime_SemacquireMutex(&rw.writerSem, false, 0) } }
假设此时有 5 个协程拿到读锁,则 readerCount = 5,假设 rwmutexMaxReaders = 100。
此时有一个新的协程 w1 想要拿写锁。
在执行
r := atomic.AddInt32(&rw.readerCount, -rwmutexMaxReaders) + rwmutexMaxReaders
后, rw.readerCount = -95,r = 5。
在执行
atomic.AddInt32(&rw.readerWait, r)
后,rw.readerWait = 5。
readerWait
记录了在获取写锁的这一瞬间有多少个协程持有读锁。这一瞬间之后,就算有新的协程尝试获取读锁,也只会增加 readerCount ,而不会动到 readerWait。
之后执行 runtime_SemacquireMutex() 睡在了 writerSem 这个信号量上面。
func (rw *RWMutex) RUnlock() { if r := atomic.AddInt32(&rw.readerCount, -1); r < 0 { // Outlined slow-path to allow the fast-path to be inlined rw.rUnlockSlow(r) } } func (rw *RWMutex) rUnlockSlow(r int32) { // A writer is pending. if atomic.AddInt32(&rw.readerWait, -1) == 0 { // The last reader unblocks the writer. runtime_Semrelease(&rw.writerSem, false, 1) } }
继续上一步的场景,每当执行 RUnlock 时,readerCount 都会减去1。当 readerCount 为负数时,意味着有协程正在持有或者正在等待持有写锁。
之前的五个读协程中的四个,每次 RUnlock() 之后,readerCount = -95 - 4 = -99,readerWait = 5 - 4 = 1。
当最后一个读协程调用 RUnlock() 之后,readerCount 变成了 -100,readerWait 变成 0,此时会唤醒在 writerSem 上沉睡的协程 w1。
func (rw *RWMutex) RLock() { if atomic.AddInt32(&rw.readerCount, 1) < 0 { // A writer is pending, wait for it. runtime_SemacquireMutex(&rw.readerSem, false, 0) } }
继续上面的场景,readerCount = -100 + 1 = -99 < 0。
新的读协程 r1 被沉睡在 readerSem 下面。
假设此时再来一个读协程 r2,则 readerCount = -98,依旧沉睡。
继续上面的场景,此时协程 w1 释放写锁
func (rw *RWMutex) Unlock() { // Announce to readers there is no active writer. r := atomic.AddInt32(&rw.readerCount, rwmutexMaxReaders) // Unblock blocked readers, if any. for i := 0; i < int(r); i++ { runtime_Semrelease(&rw.readerSem, false, 0) } // Allow other writers to proceed. rw.w.Unlock() }
在执行
atomic.AddInt32(&rw.readerCount, rwmutexMaxReaders)
后,r = readerCount = -98 + 100 = 2,代表此时有两个读协程 r1 和 r2 在等待
ps: 如果此时有一些新的协程想要拿读锁,他会因为 readerCount = 2 + 1 = 3 > 0 而顺利执行下去,不会被阻塞
之后 for 循环执行两次,将协程 r1 和 协程 r2 都唤醒了。
func (rw *RWMutex) Unlock() { // Announce to readers there is no active writer. r := atomic.AddInt32(&rw.readerCount, rwmutexMaxReaders) // Unblock blocked readers, if any. for i := 0; i < int(r); i++ { runtime_Semrelease(&rw.readerSem, false, 0) } // Allow other writers to proceed. rw.w.Unlock() }
由于是先唤醒读锁,再调用 w.Unlock() ,因此肯定是读协程先胜利!
readerCount 与 rwmutexMaxReaders 的纠缠
通过 readerCount + rwmutexMaxReaders
以及 readerCount - rwmutexMaxReaders
这两个操作可以得知当前是否有协程等待/持有写锁以及当前等待/持有读锁的协程数量
readerCount 与 readerWait 的纠缠
在 Lock() 时直接将 readerCount 的值赋给 readerWait,在 readerWait = 0 而非 readerCount = 0 是唤醒写协程,可以避免在 Lock() 后来达到的读协程先于写协程被执行。
到此,关于“go RWMutex如何实现”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。