您好,登录后才能下订单哦!
在计算机科学中,排序算法是一种将一组数据按照特定顺序排列的算法。排序算法在数据处理、数据库管理、搜索引擎等领域有着广泛的应用。Java作为一种广泛使用的编程语言,提供了丰富的排序算法实现。本文将详细介绍Java中七大常用的排序算法,包括它们的原理、实现代码以及使用场景。
冒泡排序是一种简单的排序算法,它重复地遍历要排序的列表,比较相邻的元素并交换它们的位置,直到没有需要交换的元素为止。冒泡排序的名字来源于较小的元素会像气泡一样逐渐“浮”到列表的顶端。
public class BubbleSort {
public static void bubbleSort(int[] arr) {
int n = arr.length;
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
// 交换 arr[j] 和 arr[j+1]
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
public static void main(String[] args) {
int[] arr = {64, 34, 25, 12, 22, 11, 90};
bubbleSort(arr);
System.out.println("排序后的数组:");
for (int i : arr) {
System.out.print(i + " ");
}
}
}
冒泡排序适用于数据量较小的情况,因为它的时间复杂度为O(n^2),在数据量较大时性能较差。
选择排序是一种简单直观的排序算法。它的工作原理是每次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。
public class SelectionSort {
public static void selectionSort(int[] arr) {
int n = arr.length;
for (int i = 0; i < n - 1; i++) {
int minIndex = i;
for (int j = i + 1; j < n; j++) {
if (arr[j] < arr[minIndex]) {
minIndex = j;
}
}
// 交换 arr[i] 和 arr[minIndex]
int temp = arr[i];
arr[i] = arr[minIndex];
arr[minIndex] = temp;
}
}
public static void main(String[] args) {
int[] arr = {64, 25, 12, 22, 11};
selectionSort(arr);
System.out.println("排序后的数组:");
for (int i : arr) {
System.out.print(i + " ");
}
}
}
选择排序适用于数据量较小的情况,因为它的时间复杂度为O(n^2),在数据量较大时性能较差。
插入排序是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
public class InsertionSort {
public static void insertionSort(int[] arr) {
int n = arr.length;
for (int i = 1; i < n; i++) {
int key = arr[i];
int j = i - 1;
while (j >= 0 && arr[j] > key) {
arr[j + 1] = arr[j];
j = j - 1;
}
arr[j + 1] = key;
}
}
public static void main(String[] args) {
int[] arr = {12, 11, 13, 5, 6};
insertionSort(arr);
System.out.println("排序后的数组:");
for (int i : arr) {
System.out.print(i + " ");
}
}
}
插入排序适用于数据量较小或部分有序的情况,因为它的时间复杂度为O(n^2),但在数据量较小或部分有序时性能较好。
希尔排序是插入排序的一种高效改进版本,也称为缩小增量排序。它通过将待排序的数组元素按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个数组恰被分成一组,算法便终止。
public class ShellSort {
public static void shellSort(int[] arr) {
int n = arr.length;
for (int gap = n / 2; gap > 0; gap /= 2) {
for (int i = gap; i < n; i++) {
int temp = arr[i];
int j;
for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {
arr[j] = arr[j - gap];
}
arr[j] = temp;
}
}
}
public static void main(String[] args) {
int[] arr = {12, 34, 54, 2, 3};
shellSort(arr);
System.out.println("排序后的数组:");
for (int i : arr) {
System.out.print(i + " ");
}
}
}
希尔排序适用于中等规模的数据排序,因为它的时间复杂度为O(n log n),在数据量较大时性能较好。
归并排序是一种分治算法,它将待排序的数组分成两个子数组,分别对这两个子数组进行排序,然后将排序后的子数组合并成一个有序的数组。
public class MergeSort {
public static void mergeSort(int[] arr, int left, int right) {
if (left < right) {
int mid = (left + right) / 2;
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
merge(arr, left, mid, right);
}
}
public static void merge(int[] arr, int left, int mid, int right) {
int n1 = mid - left + 1;
int n2 = right - mid;
int[] L = new int[n1];
int[] R = new int[n2];
for (int i = 0; i < n1; i++) {
L[i] = arr[left + i];
}
for (int j = 0; j < n2; j++) {
R[j] = arr[mid + 1 + j];
}
int i = 0, j = 0;
int k = left;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
} else {
arr[k] = R[j];
j++;
}
k++;
}
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
public static void main(String[] args) {
int[] arr = {12, 11, 13, 5, 6, 7};
mergeSort(arr, 0, arr.length - 1);
System.out.println("排序后的数组:");
for (int i : arr) {
System.out.print(i + " ");
}
}
}
归并排序适用于大规模数据的排序,因为它的时间复杂度为O(n log n),在数据量较大时性能较好。
快速排序是一种分治算法,它通过选择一个“基准”元素,将数组分成两个子数组,一个子数组的所有元素都比基准元素小,另一个子数组的所有元素都比基准元素大,然后递归地对这两个子数组进行排序。
public class QuickSort {
public static void quickSort(int[] arr, int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}
public static int partition(int[] arr, int low, int high) {
int pivot = arr[high];
int i = (low - 1);
for (int j = low; j < high; j++) {
if (arr[j] < pivot) {
i++;
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
int temp = arr[i + 1];
arr[i + 1] = arr[high];
arr[high] = temp;
return i + 1;
}
public static void main(String[] args) {
int[] arr = {10, 7, 8, 9, 1, 5};
quickSort(arr, 0, arr.length - 1);
System.out.println("排序后的数组:");
for (int i : arr) {
System.out.print(i + " ");
}
}
}
快速排序适用于大规模数据的排序,因为它的时间复杂度为O(n log n),在数据量较大时性能较好。
堆排序是一种基于二叉堆数据结构的排序算法。它首先将待排序的数组构建成一个最大堆(或最小堆),然后将堆顶元素与堆的最后一个元素交换,调整堆结构,重复这个过程直到整个数组有序。
public class HeapSort {
public static void heapSort(int[] arr) {
int n = arr.length;
for (int i = n / 2 - 1; i >= 0; i--) {
heapify(arr, n, i);
}
for (int i = n - 1; i > 0; i--) {
int temp = arr[0];
arr[0] = arr[i];
arr[i] = temp;
heapify(arr, i, 0);
}
}
public static void heapify(int[] arr, int n, int i) {
int largest = i;
int left = 2 * i + 1;
int right = 2 * i + 2;
if (left < n && arr[left] > arr[largest]) {
largest = left;
}
if (right < n && arr[right] > arr[largest]) {
largest = right;
}
if (largest != i) {
int swap = arr[i];
arr[i] = arr[largest];
arr[largest] = swap;
heapify(arr, n, largest);
}
}
public static void main(String[] args) {
int[] arr = {12, 11, 13, 5, 6, 7};
heapSort(arr);
System.out.println("排序后的数组:");
for (int i : arr) {
System.out.print(i + " ");
}
}
}
堆排序适用于大规模数据的排序,因为它的时间复杂度为O(n log n),在数据量较大时性能较好。
本文详细介绍了Java中七大常用的排序算法,包括冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序和堆排序。每种排序算法都有其独特的原理和适用场景,开发者可以根据实际需求选择合适的排序算法。希望本文能帮助读者更好地理解和应用这些排序算法。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。