您好,登录后才能下订单哦!
本篇内容介绍了“Java并发编程的三要素是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
原子性指的是一个或者多个操作,要么全部执行并且在执行的过程中不被其他操作打断,要么就全部都不执行。
线程切换是产生原子性问题的原因,线程切换是为了提高 CPU 的利用率。
以 count ++ 为例,至少需要三条 CPU 指令:
指令 1:首先,需要把变量 count 从内存加载到 CPU 的寄存器;
指令 2:之后,在寄存器中执行 +1 操作;
指令 3:最后,将结果写入内存(缓存机制导致可能写入的是 CPU 缓存而不是内存)。
我们假设 count=0,如果线程 A 在指令 1 执行完后做线程切换,线程 A 和线程 B 按照下图的序列执行,那么我们会发现两个线程都执行了 count+=1 的操作,但是得到的结果不是我们期望的 2,而是 1。
多线程环境下中,Java 只保证了基本数据类型的变量和赋值操作才是原子性的( 注:在32位的JDK环境下,对64位数据的读取不是原子性操作*,如long、double )
如果我们能够保证对共享变量的修改是互斥的,那么,无论是单核 CPU 还是多核 CPU,就都能保证原子性了。加锁可以解决原子性问题,如使用 synchronized、lock 。
可见性指多个线程操作一个共享变量时,其中一个线程对变量进行修改后,其他线程可以立即看到修改的结果。
CPU 缓存与内存的数据一致性是导致可见性问题的原因,CPU 缓存是为了提高 CPU 的效率。
产生可见性问题的原因是 CPU 缓存,那我们禁用 CPU 缓存就可以了。
volatile 字段能禁用 CPU 缓存,解决可见性问题。
synchronized 和锁都可以保证可见性。
可见性规则就是 Happens-Before 规则 。
Happens-Before 规则:
简单来说就是: 前面一个操作的结果对后续操作是可见的。
Happens-Before 约束了编译器的优化行为,虽允许编译器优化,但是要求编译器优化后一定遵守 Happens-Before 规则。
程序的顺序性规则
在一个线程中,按照程序顺序,前面的操作 Happens-Before 于后续的任意操作。
class Example { public void test() { int x = 42; ① int y = 20; ② } }
① Happens-Before ② 。
volatile 变量规则
对一个 volatile 变量的写操作, Happens-Before 于后续对这个 volatile 变量的读操作。
传递性规则
如果 A Happens-Before B,且 B Happens-Before C,那么 A Happens-Before C。
class Example { int x = 0; volatile int y = 0; public void writer() { x = 42; ① y = 1; ② } public void reader() { if (y == 1) { ③ // 这里x会是多少呢? } } }
① Happens-Before ② ,满足规则1-顺序性规则。
② Happens-Before ③,满足规则2-volatile 变量规则。
① Happens-Before ③,满足规则3-传递性规则。如果 y == 1,则 x = 42;
管程中锁的规则
对一个锁的解锁 Happens-Before 于后续对这个锁的加锁。
管程是一种通用的同步原语,在 Java 中指的就是 synchronized,synchronized 是 Java 里对管程的实现。
synchronized (this) { //此处自动加锁 // x是共享变量,初始值=10 if (this.x < 12) { this.x = 12; } } //此处自动解锁
假设 x 的初始值是 10,线程 A 执行完代码块后 x 的值会变成 12(执行完自动释放锁);
线程 B 进入代码块时,能够看到线程 A 对 x 的写操作,也就是线程 B 能够看到 x==12。
线程 start() 规则
它是指主线程 A 启动子线程 B 后,子线程 B 能够看到主线程在启动子线程 B 前的操作。
线程 join() 规则
它是指主线程 A 等待子线程 B 完成(主线程 A 通过调用子线程 B 的 join() 方法实现),当子线程 B 完成后(主线程 A 中 join() 方法返回),主线程能够看到子线程的操作。当然所谓的“看到”,指的是对共享变量的操作。
有序性,即程序的执行顺序按照代码的先后顺序来执行。
编译器为了优化性能,有时候会改变程序中语句的先后顺序。
例如:“a=6;b=7;”编译器优化后可能变成“b=7;a=6;”,在这个例子中,编译器调整了语句的顺序,但是不影响程序的最终结果。
以双重检查代码为例:
public class Singleton { static Singleton instance; static Singleton getInstance(){ if (instance == null) { ① synchronized(Singleton.class) { if (instance == null) instance = new Singleton(); ② } } return instance; } }
上面的代码有问题,问题在 ② 操作上:经过优化后的执行路径是这样的:
分配一块内存 M;
将 M 的地址赋值给 instance 变量;
最后在内存 M 上初始化 Singleton 对象。
优化后会导致什么问题呢?我们假设线程 A 先执行 getInstance() 方法,当执行完 ① 时恰好发生了线程切换,切换到了线程 B 上;如果此时线程 B 也执行 getInstance() 方法,那么线程 B 在执行第一个判断时会发现 instance != null ,所以直接返回 instance,而此时的 instance 是没有初始化过的,如果我们这个时候访问 instance 的成员变量就可能触发空指针异常。
如何解决双重检查问题?变量用 volatile 来修饰,禁止指令重排序。
public class Singleton { static volatile Singleton instance; static Singleton getInstance(){ if (instance == null) { ① synchronized(Singleton.class) { if (instance == null) instance = new Singleton(); ② } } return instance; } }
“Java并发编程的三要素是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。