您好,登录后才能下订单哦!
今天小编给大家分享一下python如何实现决策树分类算法的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
决策树是一种十分常用的分类算法,属于监督学习;也就是给出一批样本,每个样本都有一组属性和一个分类结果。算法通过学习这些样本,得到一个决策树,这个决策树能够对新的数据给出合适的分类
假设现有用户14名,其个人属性及是否购买某一产品的数据如下:
编号 | 年龄 | 收入范围 | 工作性质 | 信用评级 | 购买决策 |
---|---|---|---|---|---|
01 | <30 | 高 | 不稳定 | 较差 | 否 |
02 | <30 | 高 | 不稳定 | 好 | 否 |
03 | 30-40 | 高 | 不稳定 | 较差 | 是 |
04 | >40 | 中等 | 不稳定 | 较差 | 是 |
05 | >40 | 低 | 稳定 | 较差 | 是 |
06 | >40 | 低 | 稳定 | 好 | 否 |
07 | 30-40 | 低 | 稳定 | 好 | 是 |
08 | <30 | 中等 | 不稳定 | 较差 | 否 |
09 | <30 | 低 | 稳定 | 较差 | 是 |
10 | >40 | 中等 | 稳定 | 较差 | 是 |
11 | <30 | 中等 | 稳定 | 好 | 是 |
12 | 30-40 | 中等 | 不稳定 | 好 | 是 |
13 | 30-40 | 高 | 稳定 | 较差 | 是 |
14 | >40 | 中等 | 不稳定 | 好 | 否 |
为了方便处理,对模拟数据按以下规则转换为数值型列表数据:
年龄:<30赋值为0;30-40赋值为1;>40赋值为2
收入:低为0;中为1;高为2
工作性质:不稳定为0;稳定为1
信用评级:差为0;好为1
#创建数据集 def createdataset(): dataSet=[[0,2,0,0,'N'], [0,2,0,1,'N'], [1,2,0,0,'Y'], [2,1,0,0,'Y'], [2,0,1,0,'Y'], [2,0,1,1,'N'], [1,0,1,1,'Y'], [0,1,0,0,'N'], [0,0,1,0,'Y'], [2,1,1,0,'Y'], [0,1,1,1,'Y'], [1,1,0,1,'Y'], [1,2,1,0,'Y'], [2,1,0,1,'N'],] labels=['age','income','job','credit'] return dataSet,labels
调用函数,可获得数据:
ds1,lab = createdataset() print(ds1) print(lab)
[[0, 2, 0, 0, ‘N’], [0, 2, 0, 1, ‘N’], [1, 2, 0, 0, ‘Y’], [2, 1, 0, 0, ‘Y’], [2, 0, 1, 0, ‘Y’], [2, 0, 1, 1, ‘N’], [1, 0, 1, 1, ‘Y’], [0, 1, 0, 0, ‘N’], [0, 0, 1, 0, ‘Y’], [2, 1, 1, 0, ‘Y’], [0, 1, 1, 1, ‘Y’], [1, 1, 0, 1, ‘Y’], [1, 2, 1, 0, ‘Y’], [2, 1, 0, 1, ‘N’]]
[‘age’, ‘income’, ‘job’, ‘credit’]
信息熵也称为香农熵,是随机变量的期望。度量信息的不确定程度。信息的熵越大,信息就越不容易搞清楚。处理信息就是为了把信息搞清楚,就是熵减少的过程。
def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCounts = {} for featVec in dataSet: currentLabel = featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 shannonEnt = 0.0 for key in labelCounts: prob = float(labelCounts[key])/numEntries shannonEnt -= prob*log(prob,2) return shannonEnt
样本数据信息熵:
shan = calcShannonEnt(ds1) print(shan)
0.9402859586706309
信息增益:用于度量属性A降低样本集合X熵的贡献大小。信息增益越大,越适于对X分类。
def chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0])-1 baseEntropy = calcShannonEnt(dataSet) bestInfoGain = 0.0;bestFeature = -1 for i in range(numFeatures): featList = [example[i] for example in dataSet] uniqueVals = set(featList) newEntroy = 0.0 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) prop = len(subDataSet)/float(len(dataSet)) newEntroy += prop * calcShannonEnt(subDataSet) infoGain = baseEntropy - newEntroy if(infoGain > bestInfoGain): bestInfoGain = infoGain bestFeature = i return bestFeature
以上代码实现了基于信息熵增益的ID3决策树学习算法。其核心逻辑原理是:依次选取属性集中的每一个属性,将样本集按照此属性的取值分割为若干个子集;对这些子集计算信息熵,其与样本的信息熵的差,即为按照此属性分割的信息熵增益;找出所有增益中最大的那一个对应的属性,就是用于分割样本集的属性。
计算样本最佳的分割样本属性,结果显示为第0列,即age属性:
col = chooseBestFeatureToSplit(ds1) col
0
def majorityCnt(classList): classCount = {} for vote in classList: if vote not in classCount.keys():classCount[vote] = 0 classCount[vote] += 1 sortedClassCount = sorted(classList.iteritems(),key=operator.itemgetter(1),reverse=True)#利用operator操作键值排序字典 return sortedClassCount[0][0] #创建树的函数 def createTree(dataSet,labels): classList = [example[-1] for example in dataSet] if classList.count(classList[0]) == len(classList): return classList[0] if len(dataSet[0]) == 1: return majorityCnt(classList) bestFeat = chooseBestFeatureToSplit(dataSet) bestFeatLabel = labels[bestFeat] myTree = {bestFeatLabel:{}} del(labels[bestFeat]) featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) for value in uniqueVals: subLabels = labels[:] myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels) return myTree
majorityCnt
函数用于处理一下情况:最终的理想决策树应该沿着决策分支到达最底端时,所有的样本应该都是相同的分类结果。但是真实样本中难免会出现所有属性一致但分类结果不一样的情况,此时majorityCnt
将这类样本的分类标签都调整为出现次数最多的那一个分类结果。
createTree
是核心任务函数,它对所有的属性依次调用ID3信息熵增益算法进行计算处理,最终生成决策树。
利用样本数据构造决策树:
Tree = createTree(ds1, lab) print("样本数据决策树:") print(Tree)
样本数据决策树:
{‘age’: {0: {‘job’: {0: ‘N’, 1: ‘Y’}},
1: ‘Y’,
2: {‘credit’: {0: ‘Y’, 1: ‘N’}}}}
给出一个新的用户信息,判断ta是否购买某一产品:
年龄 | 收入范围 | 工作性质 | 信用评级 |
---|---|---|---|
<30 | 低 | 稳定 | 好 |
<30 | 高 | 不稳定 | 好 |
def classify(inputtree,featlabels,testvec): firststr = list(inputtree.keys())[0] seconddict = inputtree[firststr] featindex = featlabels.index(firststr) for key in seconddict.keys(): if testvec[featindex]==key: if type(seconddict[key]).__name__=='dict': classlabel=classify(seconddict[key],featlabels,testvec) else: classlabel=seconddict[key] return classlabel
labels=['age','income','job','credit'] tsvec=[0,0,1,1] print('result:',classify(Tree,labels,tsvec)) tsvec1=[0,2,0,1] print('result1:',classify(Tree,labels,tsvec1))
result: Y
result1: N
以下代码用于绘制决策树图形,非决策树算法重点,有兴趣可参考学习
import matplotlib.pyplot as plt decisionNode = dict(box, fc="0.8") leafNode = dict(box, fc="0.8") arrow_args = dict(arrow) #获取叶节点的数目 def getNumLeafs(myTree): numLeafs = 0 firstStr = list(myTree.keys())[0] secondDict = myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict':#测试节点的数据是否为字典,以此判断是否为叶节点 numLeafs += getNumLeafs(secondDict[key]) else: numLeafs +=1 return numLeafs #获取树的层数 def getTreeDepth(myTree): maxDepth = 0 firstStr = list(myTree.keys())[0] secondDict = myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict':#测试节点的数据是否为字典,以此判断是否为叶节点 thisDepth = 1 + getTreeDepth(secondDict[key]) else: thisDepth = 1 if thisDepth > maxDepth: maxDepth = thisDepth return maxDepth #绘制节点 def plotNode(nodeTxt, centerPt, parentPt, nodeType): createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', xytext=centerPt, textcoords='axes fraction', va="center", ha="center", bbox=nodeType, arrowprops=arrow_args ) #绘制连接线 def plotMidText(cntrPt, parentPt, txtString): xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0] yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1] createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30) #绘制树结构 def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on numLeafs = getNumLeafs(myTree) #this determines the x width of this tree depth = getTreeDepth(myTree) firstStr = list(myTree.keys())[0] #the text label for this node should be this cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff) plotMidText(cntrPt, parentPt, nodeTxt) plotNode(firstStr, cntrPt, parentPt, decisionNode) secondDict = myTree[firstStr] plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes plotTree(secondDict[key],cntrPt,str(key)) #recursion else: #it's a leaf node print the leaf node plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode) plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key)) plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD #创建决策树图形 def createPlot(inTree): fig = plt.figure(1, facecolor='white') fig.clf() axprops = dict(xticks=[], yticks=[]) createPlot.ax1 = plt.subplot(111, frameon=False, **axprops) #no ticks #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses plotTree.totalW = float(getNumLeafs(inTree)) plotTree.totalD = float(getTreeDepth(inTree)) plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0; plotTree(inTree, (0.5,1.0), '') plt.savefig('决策树.png',dpi=300,bbox_inches='tight') plt.show()
以上就是“python如何实现决策树分类算法”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。