C++怎么实现String类

发布时间:2022-08-24 11:26:02 作者:iii
来源:亿速云 阅读:123

这篇文章主要介绍了C++怎么实现String类的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇C++怎么实现String类文章都会有所收获,下面我们一起来看看吧。

string模拟实现

string简单实现

首先我们不考虑string类的增删查改,只是先给string类搭建一个最简单的框架出来。

和C语言中相同,为了存储一个字符串,我们的string类需要一个char*的指针来指向字符像这个对象。作为一个对象,string还需要有构造函数,析构函数和拷贝构造。

class string
{
private:
	char *_str;
public:
	string(const char *str)
		: _str(new char[strlen(str) + 1]) // +1 是给'\0'留出位置
	{
		strcpy(_str, str);
	}

	string(const string &str)
		: _str(new char[strlen(str._str) + 1])
	{
		strcpy(_str, str._str);
	}
	~string()
	{
		if (_str)
		{
			delete[] _str;
			_str = nullptr;
		}
	}
};

有的朋友可能会疑惑,这里的构造函数和拷贝构造函数为什么不用编译器自动生成的,直接将_str指向原本的字符串就可以了,为什么还要开辟空间呢?

这是因为我们在日常使用中,假如有两个string类 a 和 b,b是由a拷贝构造而来,一般情况下我们在修改b的同时不希望a也被改。此外,如果直接将_str指向原本的字符串会导致的问题是当 a 和 b用完被销毁时,会对同一片空间调用两次析构函数,对同一片空间释放两次。所以在这里,我们需要重新开辟一片空间来给这个string。这也就是所谓的深拷贝。

然后,为了访问string类中的元素,我们需要对运算符[]进行重载。

char& operator[](size_t pos)
{
    assert(pos < strlen())
    return _str[pos];
}

这样我们就实现了一个简单的string类。

string完整实现

构造函数,析构函数,拷贝构造

之前我们实现的一个string类是一个最简单的string类,它没有办法进行增删查改,接下来我们就来一点一点完善它。

要实现增删查改,我们还需要两个变量,一个记录string类当前长度,一个记录string类的容量大小。加入这两个变量后,我们原本的构造函数,拷贝构造和析构函数需要发生一点点变化。

class string
{
private:
	char *_str;
	size_t _size;
	size_t _capacity;

public:
	string(const char *str = "")
		: _size(strlen(str)), _capacity(_size)
	{
		_str = new char[_capacity + 1];
		strcpy(_str, str);
	}

    string(const string &str)
        : _size(str._size), _capacity(str._capacity)
    {
        _str = new char[_size + 1];
        strcpy(_str, str._str);
    }
    
	~string()
	{
		if (_str)
		{
			delete[] _str;
			_str = nullptr;
			_size = _capacity = 0;
		}
	}
};

运算符重载

接下来我们来实现一下,string类的运算符。在实现运算符重载时,我们需要做的只是实现少数几个运算符即可,其他的运算符可复用前面实现的运算符来达到我们想要的效果。

//关系运算符的重载
bool operator>(const string &s)
{
    return strcmp(_str, s.c_str());
}

bool operator==(const string &s)
{
    return strcmp(_str, s.c_str()) == 0;
}

bool operator!=(const string &s)
{
    return !(*this == s);
}

bool operator>=(const string &s)
{
    return *this > s || *this == s;
}

bool operator<(const string &s)
{
    return !(*this >= s);
}

bool operator<=(const string &s)
{
    return !(*this > s);
}
//操作运算符的重载
string &operator=(string& str)
{
    if(*this != str)
    {
        char *tmp = new char[str._capacity + 1];
        strcpy(tmp,str._str);
        delete[] _str;
        _str = tmp;
        _size = str._size;
        _capacity = str._capacity;
    }
    return *this;
}

char &operator[](size_t pos)
{
    assert(pos < _size);

    return *(_str + pos);
}

const char &operator[](size_t pos) const
{
    assert(pos < _size);
    return *(_str + pos);
}

string接口实现

首先是比较简单的size(),empty(),capacity(),clear()。这些接口大部分直接访问string类的成员变量就可以得到结果。

size_t size() const
{
    return _size;
}

size_t capacity() const
{
    return _capacity;
}

bool empty() const
{
    return 0 == _size;
}
//后面添加const的目的是为了让所有对象都可以进行访问
void clear()
{
    _str[0] = '\0';
    _size = 0;
    _capacity = 0;
}

因为后面的接口大部分都需要进行空间的调整,所以首先我们将调整空间的接口,reserve和resize实现。

void reserve(size_t n)
{
    if (n > _capacity) //判断是否需要扩容
    {
        char *tmp = new char[n + 1];
        strcpy(tmp, _str);
        delete[] _str;
        _str = tmp;
        _capacity = n;
    }
}

//resize和reserve的区别在于,reserve只是开空间,而resize还要进行初始化
void resize(size_t n, char c = '\0')
{
    if (n > _capacity)
    {
        reserve(n); //开空间复用reserve
    }
    for (size_t i = _size; i < n; ++i)
    {
        _str[i] = c;
    }
    _size = n;
    _str[_size] = '\0';
}

接下来是插入的实现,首先是push_back,这个比较简单,找到尾部进行插入即可。

void push_back(char n)
{
    if (_size == _capacity)
    {
        reserve(_capacity == 0 ? 4 : _capacity * 2); //开空间复用reserve
    }
    _str[_size++] = n;
    _str[_size] = '\0';
}

接下来是insert,这个较push_back而言要麻烦一些,因为除了尾插,其他地方去插入数据你都需要挪动后面数据的位置。

string &insert(size_t pos, const char *str)
{
    //检查空间是否足够
    assert(pos <= _size);
    size_t len = strlen(str);
    if (len + _size > _capacity)
    {
        reserve(len + _size);
    }

   	//挪动后面的数据
    size_t end = _size + len;
    while (end != pos + len - 1)
    {
        _str[end] = _str[end - len];
        --end;
    }

    //数据插入
    strncpy(_str + pos, str, len);
    _size += len;
    return *this;
}

写完了插入,接下来当然就是删除接口:eraser

string &eraser(size_t pos, size_t len = npos) //npos为静态变量,值为-1
{
    assert(pos < _size);
    
    if (len == npos || pos + len >= _size) //将位置后的元素全部删除
    {
        _str[pos] = '\0';
        _size = pos;
    }
    else //删除位置后的部分元素
    {
        size_t begin = pos + len;
        while (begin <= _size)
        {
            _str[begin - len] = _str[begin];
            begin++;
        }
        _size = _size - len;
    }
    return *this;
}

迭代器的实现

C++中的迭代器和指针类似。为什么要有迭代器呢?因为C++中有各种各样的容器,每个容器它背后的存储方式不同,访问方式也不同,为了让使用者的使用成本降低,使大部分容器可以以相同的方式去访问,就有了迭代器的产生。

接下来我们来实现string的迭代器,其实string的迭代器就是一个指针。并不用去封装特别的东西。

typedef char *iterator;
typedef const char *const_iterator;

const_iterator begin() const
{
    return _str;
}

const_iterator end() const
{
    return _str + _size;
}

iterator begin()
{
    return _str;
}

iterator end()
{
    return _str + _size;
}

部分函数优化和完善

前面在写运算符重载时,还有部分运算符未重载在此加上

string &operator+=(const char *str)
{
    append(str);
}

string &operator+=(char n)
{
    push_back(n);
    return *this;
}

同时增加拷贝构造和operator=的现代写法,之前我们写拷贝构造和operator=时都需要自己去重新开空间,那么这个活可不可以让其他人帮我做呢?

我们来看看下面这一段代码

void swap(string& str)
{
    std::swap(_str, str._str);
    std::swap(_size, str._size);
    std::swap(_capacity, str._capacity);
}

string(const string &s)
    : _str(nullptr), _size(0), _capacity(0)
{
    string tmp(s._str);
    swap(tmp);
}

string &operator=(string s)
{
    swap(s);
    return *this;
}

上述代码同样可以帮我们完成拷贝构造和operator= ,原理如下:

1.首先是拷贝构造,我们在拷贝构造中使用构造函数去创建一个临时对象,这个临时对象在创建时,就帮我们开辟了空间。然后我们将临时对象和此对象的所有成员进行一个交换,这样此对象就可以接管临时对象创建的那块空间,我们的拷贝构造也就成功了

2.在operator=这,我们使用的是传值传参。好处在于由于我们的string类是自定义对象,所以在传参时会去调用拷贝构造,这样传过来的str参数也拥有了自己的空间,此时我们和拷贝构造一样,将str所开辟的那块空间接管,同时由于str是函数参数,当函数结束时,str会去调用析构函数进行一个空间释放。

完整代码

class string
{
public:
    typedef char *iterator;
    typedef const char *const_iterator;

    const_iterator begin() const
    {
        return _str;
    }

    const_iterator end() const
    {
        return _str + _size;
    }

    iterator begin()
    {
        return _str;
    }

    iterator end()
    {
        return _str + _size;
    }

    string(const char *s = "")
        : _size(strlen(s)),
          _capacity(_size)
    {
        _str = new char[_capacity + 1];
        strcpy(_str, s);
    }

    string(const string &s)
        : _str(nullptr),
          _size(0),
          _capacity(0)
    {
        string tmp(s._str);
        swap(tmp);
    }

    ~string()
    {
        delete[] _str;
        _str = nullptr;
        _size = _capacity = 0;
    }

    string &operator=(string s)
    {
        swap(s);
        return *this;
    }

    char &operator[](size_t pos)
    {
        assert(pos < _size);

        return *(_str + pos);
    }

    const char &operator[](size_t pos) const
    {
        assert(pos < _size);
        return *(_str + pos);
    }

    const char *c_str() const
    {
        return _str;
    }

    void reserve(size_t n)
    {
        if (n > _capacity)
        {
            char *tmp = new char[n + 1];
            strcpy(tmp, _str);
            delete[] _str;
            _str = tmp;
            _capacity = n;
        }
    }

    void push_back(char n)
    {
        if (_size == _capacity)
        {
            reserve(_capacity == 0 ? 4 : _capacity * 2);
        }
        _str[_size++] = n;
        _str[_size] = '\0';
    }

    string &operator+=(char n)
    {
        push_back(n);
        return *this;
    }

    void append(const char *str)
    {
        size_t len = _size + strlen(str);
        if (len > _capacity)
        {
            reserve(len);
        }
        strcpy(_str + _size, str);
        _size = len;
    }

    string &operator+=(const char *str)
    {
        append(str);
    }

    void resize(size_t n, char c = '\0')
    {
        if (n > _capacity)
        {
            reserve(n);
        }
        for (size_t i = _size; i < n; ++i)
        {
            _str[i] = c;
        }
        _size = n;
        _str[_size] = '\0';
    }

    size_t size() const
    {
        return _size;
    }

    size_t capacity() const
    {
        return _capacity;
    }

    bool empty()
    {
        return 0 == _size;
    }

    bool operator>(const string &s)
    {
        return strcmp(_str, s.c_str());
    }

    bool operator==(const string &s)
    {
        return strcmp(_str, s.c_str()) == 0;
    }

    bool operator!=(const string &s)
    {
        return !(*this == s);
    }

    bool operator>=(const string &s)
    {
        return *this > s || *this == s;
    }

    bool operator<(const string &s)
    {
        return !(*this >= s);
    }

    bool operator<=(const string &s)
    {
        return !(*this > s);
    }

    string &insert(size_t pos, const char *str)
    {
        assert(pos <= _size);
        size_t len = strlen(str);
        if (len + _size > _capacity)
        {
            reserve(len + _size);
        }

        size_t end = _size + len;
        while (end != pos + len - 1)
        {
            _str[end] = _str[end - len];
            --end;
        }

        strncpy(_str + pos, str, len);
        _size += len;
        return *this;
    }

    string &eraser(size_t pos, size_t len = npos)
    {
        assert(pos < _size);

        if (len == npos || pos + len >= _size)
        {
            _str[pos] = '\0';
            _size = pos;
        }
        else
        {
            size_t begin = pos + len;
            while (begin <= _size)
            {
                _str[begin - len] = _str[begin];
                begin++;
            }
            _size = _size - len;
        }
        return *this;
    }

    void clear()
    {
        _size = 0;
        _str[0] = '\0';
        _capacity = 0;
    }

    void swap(string &s)
    {
        std::swap(_str, s._str);
        std::swap(_size, s._size);
        std::swap(_capacity, s._capacity);
    }

    size_t find(char c, size_t pos = 0) const
    {
        while (pos < _size)
        {
            if (_str[pos] == c)
            {
                return pos;
            }
            ++pos;
        }
        return npos;
    }

    size_t find(char *s, size_t pos = 0) const
    {
        const char *p = strstr(_str + pos, s);
        if (p == nullptr)
        {
            return npos;
        }
        else
        {
            return p - _str;
        }
    }

private:
    char *_str;
    size_t _size;
    size_t _capacity;
    const static size_t npos;
};

const size_t string::npos = -1;

关于“C++怎么实现String类”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“C++怎么实现String类”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注亿速云行业资讯频道。

推荐阅读:
  1. C++ String类写时拷贝
  2. C++ string类

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

c++ string

上一篇:android中px、sp与dp之间怎么进行转换

下一篇:ES6中Set和Map数据结构实例分析

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》