您好,登录后才能下订单哦!
这篇文章主要讲解了“如何通过Async反向与内核通信”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“如何通过Async反向与内核通信”吧!
在开始学习Async反向通信之前先来研究一个Sync正向通信案例,不论是正向反向通信其在通信模式上与通过ReadFile与内核层通信
的通信模式基本一致,都是通过ReadFile
触发驱动中的IRP_MJ_READ
读取派遣,唯一的区别是在传输数据时使用了MmGetSystemAddressForMdl
方式,它将给定MDL
描述的物理页面映射到系统空间,并调用RtlCopyMemory()
将全局字符串复制到这个空间内,这样客户端就可以循环读取内核传出的数据。
我们来看驱动端代码是如何实现的这个功能,代码并没有什么特殊的无法理解的点,只是需要注意我们在驱动入口调用IoCreateDevice()
时传入了第二个参数FILE_DEVICE_EXTENSION
,该参数的作用是,创建设备时,指定设备扩展内存的大小,传一个值进去,就会给设备分配一块非页面内存。
#include <ntddk.h> #include <stdio.h> // 保存一段非分页内存,用于给全局变量使用 #define FILE_DEVICE_EXTENSION 4096 // 定义全局字符串 static int global_count = 0; static char global_char[5][128] = { 0 }; // 驱动绑定默认派遣函数 NTSTATUS _DefaultDispatch(PDEVICE_OBJECT _pDeviceObject, PIRP _pIrp) { _pIrp->IoStatus.Status = STATUS_NOT_SUPPORTED; _pIrp->IoStatus.Information = 0; IoCompleteRequest(_pIrp, IO_NO_INCREMENT); return _pIrp->IoStatus.Status; } // 驱动创建后触发 NTSTATUS _SyncCreateCloseDispatch(PDEVICE_OBJECT _pDevcieObject, PIRP _pIrp) { _pIrp->IoStatus.Status = STATUS_SUCCESS; _pIrp->IoStatus.Information = 0; IoCompleteRequest(_pIrp, IO_NO_INCREMENT); return _pIrp->IoStatus.Status; } // 应用层读数据后触发 NTSTATUS _SyncReadDispatch(PDEVICE_OBJECT _pDeviceObject, PIRP _pIrp) { NTSTATUS status = STATUS_SUCCESS; PIO_STACK_LOCATION pIrpStack = IoGetCurrentIrpStackLocation(_pIrp); PVOID pBuffer = NULL; ULONG uBufferLen = 0; do { // 读写请求使用的是直接I/O方式 pBuffer = MmGetSystemAddressForMdl(_pIrp->MdlAddress); if (pBuffer == NULL) { status = STATUS_UNSUCCESSFUL; break; } uBufferLen = pIrpStack->Parameters.Read.Length; DbgPrint("读字节长度: %d \n", uBufferLen); // 最大支持20字节读请求 uBufferLen = uBufferLen >= 20 ? 20 : uBufferLen; // 输出五次字符串 if (global_count < 5) { RtlCopyMemory(pBuffer, global_char[global_count], uBufferLen); global_count = global_count + 1; } } while (FALSE); // 填写返回状态及返回大小 _pIrp->IoStatus.Status = status; _pIrp->IoStatus.Information = uBufferLen; // 完成IRP IoCompleteRequest(_pIrp, IO_NO_INCREMENT); return status; } // 卸载驱动 VOID _UnloadDispatch(PDRIVER_OBJECT _pDriverObject) { // 删除创建的设备 UNICODE_STRING Win32DeviceName; RtlInitUnicodeString(&Win32DeviceName, L"\\DosDevices\\LySharkSync"); IoDeleteDevice(_pDriverObject->DeviceObject); } // 驱动入口 NTSTATUS DriverEntry(PDRIVER_OBJECT _pDriverObject, PUNICODE_STRING _pRegistryPath) { UNICODE_STRING DeviceName, Win32DeivceName; PDEVICE_OBJECT pDeviceObject = NULL; NTSTATUS status; HANDLE hThread; OBJECT_ATTRIBUTES ObjectAttributes; // 设置符号名 RtlInitUnicodeString(&DeviceName, L"\\Device\\LySharkSync"); RtlInitUnicodeString(&Win32DeivceName, L"\\DosDevices\\LySharkSync"); // 循环初始化IRP函数 for (ULONG i = 0; i <= IRP_MJ_MAXIMUM_FUNCTION; i++) { _pDriverObject->MajorFunction[i] = _DefaultDispatch; } // 再次覆盖派遣函数 _pDriverObject->MajorFunction[IRP_MJ_CREATE] = _SyncCreateCloseDispatch; _pDriverObject->MajorFunction[IRP_MJ_CLOSE] = _SyncCreateCloseDispatch; _pDriverObject->MajorFunction[IRP_MJ_READ] = _SyncReadDispatch; _pDriverObject->DriverUnload = _UnloadDispatch; // 分配一个自定义扩展 大小为sizeof(DEVEXT) // By: LyShark.com status = IoCreateDevice(_pDriverObject, sizeof(FILE_DEVICE_EXTENSION), &DeviceName, FILE_DEVICE_UNKNOWN, 0, FALSE, &pDeviceObject); if (!NT_SUCCESS(status)) return status; if (!pDeviceObject) return STATUS_UNEXPECTED_IO_ERROR; // 为全局变量赋值 strcpy(global_char[0], "hi,lyshark A"); strcpy(global_char[1], "hi,lyshark B"); strcpy(global_char[2], "hi,lyshark C"); strcpy(global_char[3], "hi,lyshark D"); strcpy(global_char[4], "hi,lyshark E"); // 指定读写方式为 直接I/O MDL模式 pDeviceObject->Flags |= DO_DIRECT_IO; // 数据传输时地址校验大小 pDeviceObject->AlignmentRequirement = FILE_WORD_ALIGNMENT; status = IoCreateSymbolicLink(&Win32DeivceName, &DeviceName); pDeviceObject->Flags &= ~DO_DEVICE_INITIALIZING; return STATUS_SUCCESS; }
对于应用层来说并没有什么特别的,同样调用ReadFile
读取内核中的参数,同样for循环读取五次,代码如下:
#include <stdio.h> #include <Windows.h> int main(int argc, char *argv[]) { HANDLE hFile; char Buffer[10] = { 0 }; DWORD dwRet = 0; BOOL bRet; hFile = CreateFileA("\\\\.\\LySharkSync", GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (hFile == INVALID_HANDLE_VALUE) return 0; for (int x = 0; x < 5; x++) { bRet = ReadFile(hFile, Buffer, 20, &dwRet, NULL); if (!bRet) { CloseHandle(hFile); return 0; } printf("读入数据: %s -> 读取长度: %d \n", Buffer, dwRet); } return 0; }
这段代码运行效果如下:
与同步模式不同,异步模式
虽然同样使用ReadFile
实现通信,但在通信中引入了Event
事件通知机制,这也是异步与同步最大的区别所在,用户层可以分别创建多个Event事件,等待内核依次做出相应并最终一并返回。
首先驱动内定义了_DeviceExtension
自定义接口,该接口用于保存此次事件所对应的Irp
以及其所对应的DPC时间等。
异步分发函数_AsyncReadDispatch
同样是被IRP_MJ_READ
派遣函数触发的,触发后其内部会首先IoGetCurrentIrpStackLocation
得到当前IRP的堆栈信息,然后设置IoMarkIrpPending()
并最终将该IRP通过InsertTailList()
插入到IRP链表内等待被处理。
IoMarkIrpPending
用于标记指定的IRP,标志着某个驱动的分发例程(分发函数)因需要被其他的驱动程序进一步处理最终返回STATUS_PENDING状态。
函数_CustomDpc
则是定时器内部要执行的具体操作,在DriverEntry
驱动入口处做了如下初始化,初始化了链表,并初始化了一个定时器,最后启动这个定时器每隔1秒都会执行一次_CustomDpc
如果我们的IRP链表内IsListEmpty() 检测
存在数据,则会主动拷贝内存RtlCopyMemory
并推送到应用层。
// 初始化IRP链表 InitializeListHead(&pDevExt->IrpList); // 初始化定时器 KeInitializeTimer(&(pDevExt->timer)); // 初始化DPC pDevExt是传给_CustomDpc函数的参数 KeInitializeDpc(&pDevExt->dpc, (PKDEFERRED_ROUTINE)_CustomDpc, pDevExt); // 设置定时时间位1s pDevExt->liDueTime = RtlConvertLongToLargeInteger(-10000000); // 启动定时器 KeSetTimer(&pDevExt->timer, pDevExt->liDueTime, &pDevExt->dpc);
驱动层完成代码如下所示:
#include <ntddk.h> // 自定义接口扩展 typedef struct _DeviceExtension { LIST_ENTRY IrpList; KTIMER timer; LARGE_INTEGER liDueTime; KDPC dpc; }DEV_EXT, *PDEV_EXT; // 默认派遣函数 NTSTATUS _DefaultDispatch(PDEVICE_OBJECT _pDeviceObject, PIRP _pIrp) { _pIrp->IoStatus.Status = STATUS_NOT_SUPPORTED; _pIrp->IoStatus.Information = 0; IoCompleteRequest(_pIrp, IO_NO_INCREMENT); return _pIrp->IoStatus.Status; } // 创建派遣函数 NTSTATUS _AsyncCreateCloseDispatch(PDEVICE_OBJECT _pDevcieObject, PIRP _pIrp) { _pIrp->IoStatus.Status = STATUS_SUCCESS; _pIrp->IoStatus.Information = 0; IoCompleteRequest(_pIrp, IO_NO_INCREMENT); return _pIrp->IoStatus.Status; } // 读取派遣函数 NTSTATUS _AsyncReadDispatch(PDEVICE_OBJECT _pDeviceObject, PIRP _pIrp) { NTSTATUS status; PIO_STACK_LOCATION pIrpStack = IoGetCurrentIrpStackLocation(_pIrp); PDEV_EXT pDevExt = (PDEV_EXT)_pDeviceObject->DeviceExtension; IoMarkIrpPending(_pIrp); // 将IRP插入自定义链表中插入的是ListEntry InsertTailList(&pDevExt->IrpList, &_pIrp->Tail.Overlay.ListEntry); // 返回pending 主要返回给I/O管理器的值必须和IRP的Pending标志位一致 // By: LyShark.com // 即调用iomarkirppending和返回值要一致 return STATUS_PENDING; } // DPC线程 VOID _CustomDpc(PKDPC Dpc, PVOID DeferredContext, PVOID SystemArgument1, PVOID SystemArgument2) { PIRP pIrp; PDEV_EXT pDevExt = (PDEV_EXT)DeferredContext; PVOID pBuffer = NULL; ULONG uBufferLen = 0; PIO_STACK_LOCATION pIrpStack = NULL; do { if (!pDevExt) { break; } // 检查尾端IRP链表是否为空 为空则跳出 if (IsListEmpty(&pDevExt->IrpList)) { break; } // 从IRP链表中取出一个IRP并完成该IRP 取出的是ListEntry的地址 PLIST_ENTRY pListEntry = (PLIST_ENTRY)RemoveHeadList(&pDevExt->IrpList); if (!pListEntry) break; pIrp = (PIRP)CONTAINING_RECORD(pListEntry, IRP, Tail.Overlay.ListEntry); pIrpStack = IoGetCurrentIrpStackLocation(pIrp); DbgPrint("当前DPC Irp: 0x%x\n", pIrp); // 驱动程序的读写方式位直接I/O pBuffer = MmGetSystemAddressForMdl(pIrp->MdlAddress); if (pBuffer == NULL) { pIrp->IoStatus.Status = STATUS_UNSUCCESSFUL; pIrp->IoStatus.Information = 0; IoCompleteRequest(pIrp, IO_NO_INCREMENT); break; } uBufferLen = pIrpStack->Parameters.Read.Length; DbgPrint("读取DPC长度: %d\n", uBufferLen); // 支持5字节以下的读请求 uBufferLen = uBufferLen > 13 ? 13 : uBufferLen; // 复制请求内容 RtlCopyMemory(pBuffer, "hello lyshark", uBufferLen); pIrp->IoStatus.Status = STATUS_SUCCESS; pIrp->IoStatus.Information = uBufferLen; // 完成该IRP IoCompleteRequest(pIrp, IO_NO_INCREMENT); } while (FALSE); // 重新设置定时器 KeSetTimer(&pDevExt->timer, pDevExt->liDueTime, &pDevExt->dpc); } // 卸载驱动 VOID _UnloadDispatch(PDRIVER_OBJECT _pDriverObject) { UNICODE_STRING Win32DeviceName; PDEV_EXT pDevExt = (PDEV_EXT)_pDriverObject->DeviceObject->DeviceExtension; RtlInitUnicodeString(&Win32DeviceName, L"\\DosDevices\\LySharkAsync"); // 删除定时器 // LyShark KeCancelTimer(&pDevExt->timer); // 删除创建的设备 IoDeleteDevice(_pDriverObject->DeviceObject); } // 驱动入口 NTSTATUS DriverEntry(PDRIVER_OBJECT _pDriverObject, PUNICODE_STRING _pRegistryPath) { UNICODE_STRING DeviceName, Win32DeivceName; PDEVICE_OBJECT pDeviceObject = NULL; NTSTATUS status; PDEV_EXT pDevExt = NULL; HANDLE hThread; OBJECT_ATTRIBUTES ObjectAttributes; CLIENT_ID CID; RtlInitUnicodeString(&DeviceName, L"\\Device\\LySharkAsync"); RtlInitUnicodeString(&Win32DeivceName, L"\\DosDevices\\LySharkAsync"); for (ULONG i = 0; i <= IRP_MJ_MAXIMUM_FUNCTION; i++) { _pDriverObject->MajorFunction[i] = _DefaultDispatch; } _pDriverObject->MajorFunction[IRP_MJ_CREATE] = _AsyncCreateCloseDispatch; _pDriverObject->MajorFunction[IRP_MJ_CLOSE] = _AsyncCreateCloseDispatch; _pDriverObject->MajorFunction[IRP_MJ_READ] = _AsyncReadDispatch; _pDriverObject->DriverUnload = _UnloadDispatch; // 分配自定义扩展 status = IoCreateDevice(_pDriverObject, sizeof(DEV_EXT), &DeviceName, FILE_DEVICE_UNKNOWN, 0, FALSE, &pDeviceObject); if (!NT_SUCCESS(status)) return status; if (!pDeviceObject) return STATUS_UNEXPECTED_IO_ERROR; pDeviceObject->Flags |= DO_DIRECT_IO; pDeviceObject->AlignmentRequirement = FILE_WORD_ALIGNMENT; status = IoCreateSymbolicLink(&Win32DeivceName, &DeviceName); pDeviceObject->Flags &= ~DO_DEVICE_INITIALIZING; pDevExt = (PDEV_EXT)pDeviceObject->DeviceExtension; // 初始化IRP链表 InitializeListHead(&pDevExt->IrpList); // 初始化定时器 KeInitializeTimer(&(pDevExt->timer)); // 初始化DPC pDevExt是传给_CustomDpc函数的参数 KeInitializeDpc(&pDevExt->dpc, (PKDEFERRED_ROUTINE)_CustomDpc, pDevExt); // 设置定时时间位1s pDevExt->liDueTime = RtlConvertLongToLargeInteger(-10000000); // 启动定时器 KeSetTimer(&pDevExt->timer, pDevExt->liDueTime, &pDevExt->dpc); return STATUS_SUCCESS; }
驱动层说完了,接下来是应用层,对于应用层来说,需要使用CreateEvent
打开通知事件,或者叫做事件对象,然后当有通知时,则直接使用ReadFile
读取对应的缓冲区,当所有读取全部结束WaitForMultipleObjects
等待结束即输出结果。
#include <stdio.h> #include <Windows.h> int main(int argc, char *argv[]) { HANDLE hFile; char Buffer[3][32] = { 0 }; DWORD dwRet[3] = { 0 }; OVERLAPPED ol[3] = { 0 }; HANDLE hEvent[3] = { 0 }; // By:LyShark hFile = CreateFileA("\\\\.\\LySharkAsync", GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, NULL); if (INVALID_HANDLE_VALUE == hFile) return 0; // event用来通知请求完成 hEvent[0] = CreateEvent(NULL, TRUE, FALSE, NULL); ol[0].hEvent = hEvent[0]; hEvent[1] = CreateEvent(NULL, TRUE, FALSE, NULL); ol[1].hEvent = hEvent[1]; hEvent[2] = CreateEvent(NULL, TRUE, FALSE, NULL); ol[2].hEvent = hEvent[2]; // 读取事件内容到缓存 ReadFile(hFile, Buffer[0], 13, &dwRet[0], &ol[0]); ReadFile(hFile, Buffer[1], 13, &dwRet[1], &ol[1]); ReadFile(hFile, Buffer[2], 13, &dwRet[2], &ol[2]); // 等待三个事件执行完毕 WaitForMultipleObjects(3, hEvent, TRUE, INFINITE); // 输出结果 printf("缓存LyShark A: %s \n", Buffer[0]); printf("缓存LyShark B: %s \n", Buffer[1]); printf("缓存LyShark C: %s \n", Buffer[2]); CloseHandle(hFile); return 0; }
这段代码最终运行效果如下:
感谢各位的阅读,以上就是“如何通过Async反向与内核通信”的内容了,经过本文的学习后,相信大家对如何通过Async反向与内核通信这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。