Java数据结构之常见排序算法怎么实现

发布时间:2023-01-09 09:11:17 作者:iii
来源:亿速云 阅读:178

Java数据结构之常见排序算法实现

排序算法是计算机科学中最基本和最重要的算法之一。在Java中,我们可以使用各种数据结构来实现不同的排序算法。本文将详细介绍常见的排序算法及其在Java中的实现方式。

目录

  1. 冒泡排序
  2. 选择排序
  3. 插入排序
  4. 希尔排序
  5. 归并排序
  6. 快速排序
  7. 堆排序
  8. 计数排序
  9. 桶排序
  10. 基数排序

冒泡排序

冒泡排序是一种简单的排序算法,它重复地遍历要排序的列表,比较相邻的元素并交换它们的位置,直到列表排序完成。

实现步骤

  1. 从列表的第一个元素开始,比较相邻的两个元素。
  2. 如果前一个元素大于后一个元素,交换它们的位置。
  3. 继续遍历列表,直到没有需要交换的元素。
  4. 重复上述步骤,直到列表排序完成。

Java实现

public class BubbleSort {
    public static void bubbleSort(int[] arr) {
        int n = arr.length;
        for (int i = 0; i < n - 1; i++) {
            for (int j = 0; j < n - i - 1; j++) {
                if (arr[j] > arr[j + 1]) {
                    // 交换arr[j]和arr[j+1]
                    int temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                }
            }
        }
    }

    public static void main(String[] args) {
        int[] arr = {64, 34, 25, 12, 22, 11, 90};
        bubbleSort(arr);
        System.out.println("排序后的数组:");
        for (int i : arr) {
            System.out.print(i + " ");
        }
    }
}

时间复杂度

选择排序

选择排序是一种简单直观的排序算法。它的工作原理是每次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。

实现步骤

  1. 在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
  2. 从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
  3. 重复第二步,直到所有元素均排序完毕。

Java实现

public class SelectionSort {
    public static void selectionSort(int[] arr) {
        int n = arr.length;
        for (int i = 0; i < n - 1; i++) {
            int minIndex = i;
            for (int j = i + 1; j < n; j++) {
                if (arr[j] < arr[minIndex]) {
                    minIndex = j;
                }
            }
            // 交换arr[i]和arr[minIndex]
            int temp = arr[i];
            arr[i] = arr[minIndex];
            arr[minIndex] = temp;
        }
    }

    public static void main(String[] args) {
        int[] arr = {64, 25, 12, 22, 11};
        selectionSort(arr);
        System.out.println("排序后的数组:");
        for (int i : arr) {
            System.out.print(i + " ");
        }
    }
}

时间复杂度

插入排序

插入排序是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

实现步骤

  1. 从第一个元素开始,该元素可以认为已经被排序。
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描。
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置。
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置。
  5. 将新元素插入到该位置后。
  6. 重复步骤2~5。

Java实现

public class InsertionSort {
    public static void insertionSort(int[] arr) {
        int n = arr.length;
        for (int i = 1; i < n; i++) {
            int key = arr[i];
            int j = i - 1;
            while (j >= 0 && arr[j] > key) {
                arr[j + 1] = arr[j];
                j--;
            }
            arr[j + 1] = key;
        }
    }

    public static void main(String[] args) {
        int[] arr = {12, 11, 13, 5, 6};
        insertionSort(arr);
        System.out.println("排序后的数组:");
        for (int i : arr) {
            System.out.print(i + " ");
        }
    }
}

时间复杂度

希尔排序

希尔排序是插入排序的一种更高效的改进版本。它通过将原始列表分割成若干子列表来进行排序,每个子列表使用插入排序。

实现步骤

  1. 选择一个增量序列t1,t2,…,tk,其中ti > tj,tk = 1。
  2. 按增量序列个数k,对序列进行k趟排序。
  3. 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m的子序列,分别对各子表进行直接插入排序。
  4. 仅增量因子为1时,整个序列表来处理,表长度即为整个序列的长度。

Java实现

public class ShellSort {
    public static void shellSort(int[] arr) {
        int n = arr.length;
        for (int gap = n / 2; gap > 0; gap /= 2) {
            for (int i = gap; i < n; i++) {
                int temp = arr[i];
                int j;
                for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {
                    arr[j] = arr[j - gap];
                }
                arr[j] = temp;
            }
        }
    }

    public static void main(String[] args) {
        int[] arr = {12, 34, 54, 2, 3};
        shellSort(arr);
        System.out.println("排序后的数组:");
        for (int i : arr) {
            System.out.print(i + " ");
        }
    }
}

时间复杂度

归并排序

归并排序是一种分治算法。它将一个列表分成两个子列表,分别对子列表进行排序,然后将排序后的子列表合并成一个有序列表。

实现步骤

  1. 将列表分成两个子列表。
  2. 对每个子列表递归地应用归并排序。
  3. 合并两个已排序的子列表。

Java实现

public class MergeSort {
    public static void mergeSort(int[] arr, int left, int right) {
        if (left < right) {
            int mid = (left + right) / 2;
            mergeSort(arr, left, mid);
            mergeSort(arr, mid + 1, right);
            merge(arr, left, mid, right);
        }
    }

    private static void merge(int[] arr, int left, int mid, int right) {
        int n1 = mid - left + 1;
        int n2 = right - mid;

        int[] L = new int[n1];
        int[] R = new int[n2];

        for (int i = 0; i < n1; i++) {
            L[i] = arr[left + i];
        }
        for (int j = 0; j < n2; j++) {
            R[j] = arr[mid + 1 + j];
        }

        int i = 0, j = 0;
        int k = left;
        while (i < n1 && j < n2) {
            if (L[i] <= R[j]) {
                arr[k] = L[i];
                i++;
            } else {
                arr[k] = R[j];
                j++;
            }
            k++;
        }

        while (i < n1) {
            arr[k] = L[i];
            i++;
            k++;
        }

        while (j < n2) {
            arr[k] = R[j];
            j++;
            k++;
        }
    }

    public static void main(String[] args) {
        int[] arr = {12, 11, 13, 5, 6, 7};
        mergeSort(arr, 0, arr.length - 1);
        System.out.println("排序后的数组:");
        for (int i : arr) {
            System.out.print(i + " ");
        }
    }
}

时间复杂度

快速排序

快速排序是一种分治算法。它通过选择一个“基准”元素,将列表分成两个子列表,一个子列表的所有元素都比基准元素小,另一个子列表的所有元素都比基准元素大,然后递归地对子列表进行排序。

实现步骤

  1. 选择一个基准元素。
  2. 将列表分成两个子列表,一个子列表的所有元素都比基准元素小,另一个子列表的所有元素都比基准元素大。
  3. 递归地对子列表进行排序。

Java实现

public class QuickSort {
    public static void quickSort(int[] arr, int low, int high) {
        if (low < high) {
            int pi = partition(arr, low, high);
            quickSort(arr, low, pi - 1);
            quickSort(arr, pi + 1, high);
        }
    }

    private static int partition(int[] arr, int low, int high) {
        int pivot = arr[high];
        int i = (low - 1);
        for (int j = low; j < high; j++) {
            if (arr[j] < pivot) {
                i++;
                int temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
        int temp = arr[i + 1];
        arr[i + 1] = arr[high];
        arr[high] = temp;
        return i + 1;
    }

    public static void main(String[] args) {
        int[] arr = {10, 7, 8, 9, 1, 5};
        quickSort(arr, 0, arr.length - 1);
        System.out.println("排序后的数组:");
        for (int i : arr) {
            System.out.print(i + " ");
        }
    }
}

时间复杂度

堆排序

堆排序是一种基于二叉堆数据结构的排序算法。它通过构建一个最大堆(或最小堆),然后将堆顶元素与最后一个元素交换,再调整堆,重复这个过程直到整个列表排序完成。

实现步骤

  1. 构建一个最大堆(或最小堆)。
  2. 将堆顶元素与最后一个元素交换。
  3. 调整堆,使其满足堆的性质。
  4. 重复步骤2和3,直到整个列表排序完成。

Java实现

public class HeapSort {
    public static void heapSort(int[] arr) {
        int n = arr.length;
        for (int i = n / 2 - 1; i >= 0; i--) {
            heapify(arr, n, i);
        }
        for (int i = n - 1; i > 0; i--) {
            int temp = arr[0];
            arr[0] = arr[i];
            arr[i] = temp;
            heapify(arr, i, 0);
        }
    }

    private static void heapify(int[] arr, int n, int i) {
        int largest = i;
        int left = 2 * i + 1;
        int right = 2 * i + 2;

        if (left < n && arr[left] > arr[largest]) {
            largest = left;
        }
        if (right < n && arr[right] > arr[largest]) {
            largest = right;
        }
        if (largest != i) {
            int swap = arr[i];
            arr[i] = arr[largest];
            arr[largest] = swap;
            heapify(arr, n, largest);
        }
    }

    public static void main(String[] args) {
        int[] arr = {12, 11, 13, 5, 6, 7};
        heapSort(arr);
        System.out.println("排序后的数组:");
        for (int i : arr) {
            System.out.print(i + " ");
        }
    }
}

时间复杂度

计数排序

计数排序是一种非比较排序算法,适用于整数排序。它通过统计每个元素的出现次数,然后根据统计结果将元素放回原数组。

实现步骤

  1. 找出待排序数组中的最大值和最小值。
  2. 创建一个计数数组,统计每个元素的出现次数。
  3. 根据计数数组,将元素放回原数组。

Java实现

public class CountingSort {
    public static void countingSort(int[] arr) {
        int n = arr.length;
        int max = Arrays.stream(arr).max().getAsInt();
        int min = Arrays.stream(arr).min().getAsInt();
        int range = max - min + 1;
        int[] count = new int[range];
        int[] output = new int[n];

        for (int i = 0; i < n; i++) {
            count[arr[i] - min]++;
        }

        for (int i = 1; i < range; i++) {
            count[i] += count[i - 1];
        }

        for (int i = n - 1; i >= 0; i--) {
            output[count[arr[i] - min] - 1] = arr[i];
            count[arr[i] - min]--;
        }

        for (int i = 0; i < n; i++) {
            arr[i] = output[i];
        }
    }

    public static void main(String[] args) {
        int[] arr = {4, 2, 2, 8, 3, 3, 1};
        countingSort(arr);
        System.out.println("排序后的数组:");
        for (int i : arr) {
            System.out.print(i + " ");
        }
    }
}

时间复杂度

桶排序

桶排序是一种分布式排序算法,它将元素分配到有限数量的桶中,然后对每个桶中的元素进行排序,最后将桶中的元素合并成一个有序列表。

实现步骤

  1. 创建一个固定数量的空桶。
  2. 将元素分配到对应的桶中。
  3. 对每个桶中的元素进行排序。
  4. 将桶中的元素合并成一个有序列表。

Java实现

import java.util.ArrayList;
import java.util.Collections;

public class BucketSort {
    public static void bucketSort(int[] arr, int bucketSize) {
        if (arr.length == 0) {
            return;
        }

        int minValue = arr[0];
        int maxValue = arr[0];
        for (int i = 1; i < arr.length; i++) {
            if (arr[i] < minValue) {
                minValue = arr[i];
            } else if (arr[i] > maxValue) {
                maxValue = arr[i];
            }
        }

        int bucketCount = (maxValue - minValue) / bucketSize + 1;
        ArrayList<ArrayList<Integer>> buckets = new ArrayList<>(bucketCount);
        for (int i = 0; i < bucketCount; i++) {
            buckets.add(new ArrayList<>());
        }

        for (int i = 0; i < arr.length; i++) {
            int bucketIndex = (arr[i] - minValue) / bucketSize;
            buckets.get(bucketIndex).add(arr[i]);
        }

        int currentIndex = 0;
        for (int i = 0; i < buckets.size(); i++) {
            ArrayList<Integer> bucket = buckets.get(i);
            Collections.sort(bucket);
            for (int j = 0; j < bucket.size(); j++) {
                arr[currentIndex++] = bucket.get(j);
            }
        }
    }

    public static void main(String[] args) {
        int[] arr = {29, 25, 3, 49, 9, 37, 21, 43};
        bucketSort(arr, 10);
        System.out.println("排序后的数组:");
        for (int i : arr) {
            System.out.print(i + " ");
        }
    }
}

时间复杂度

基数排序

基数排序是一种非比较排序算法,它通过将整数按位数切割成不同的数字,然后按每个位数分别比较。

实现步骤

  1. 找到数组中的最大数,确定最大数的位数。
  2. 从最低位开始,对数组进行计数排序。
  3. 重复步骤2,直到最高位。

Java实现

”`java import java.util.Arrays;

public class RadixSort { public static void radixSort(int[] arr) { int max = Arrays.stream(arr).max().getAsInt(); for (int exp = 1; max / exp > 0; exp *= 10) { countingSortByDigit(arr, exp); } }

private static void countingSortByDigit(int[] arr, int exp) {
    int n = arr.length;
    int[] output = new int[n];
    int[] count = new int[10];

    for (int i = 0; i <
推荐阅读:
  1. js中的var有什么用
  2. JavaSE指的是什么

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

java

上一篇:Java设计模式的原则有哪些

下一篇:codemirror6在线代码编辑器如何使用

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》