Go语言之切片内存如何优化

发布时间:2023-03-08 10:48:55 作者:iii
来源:亿速云 阅读:107

这篇“Go语言之切片内存如何优化”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Go语言之切片内存如何优化”文章吧。

切片为什么要做内存优化

Go 语言的切片是一个动态的数据结构,可以方便地对其进行扩容和缩容操作。由于切片的底层实现是通过数组来实现的,因此在使用切片时,需要注意内存分配和释放的开销。这也是为什么需要对切片的内存使用进行优化的原因。

内存分配和释放是非常耗时的操作,因此频繁地对切片进行重新分配和释放会影响程序的性能和效率。当程序中的数据量增加时,内存分配和释放的开销也会增加,这会导致程序变得更加缓慢。

因此,在使用切片时,需要注意内存使用的优化,尽可能地避免频繁地进行内存分配和释放操作。优化内存使用可以减少程序的运行时间和内存占用,提高程序的性能和效率。

切片优化内存的技巧

Go 语言中的切片是一个非常方便的数据结构,它可以动态地增加或缩小其长度。在处理大量数据的情况下,对切片的内存使用进行优化是非常重要的。下面是一些优化切片内存使用的技巧:

总之,在使用切片时,需要注意内存分配和释放的开销,并尽可能地优化内存使用,以提高程序的性能和效率。

实战案例

1.通过重用底层数组来避免内存分配和释放的开销

package main

import "fmt"

func main() {
    var s1 []int
    var s2 []int

    for i := 0; i < 10000000; i++ {
        s1 = append(s1, i)
        s2 = append(s2, i*2)
    }

    fmt.Printf("s1: %d, s2: %d\n", len(s1), len(s2))

    s1 = s1[:0]
    s2 = s2[:0]

    for i := 0; i < 10000000; i++ {
        s1 = append(s1, i)
        s2 = append(s2, i*2)
    }

    fmt.Printf("s1: %d, s2: %d\n", len(s1), len(s2))

    s1 = s1[:0]
    s2 = s2[:0]

    for i := 0; i < 10000000; i++ {
        if i < len(s1) {
            s1[i] = i
        } else {
            s1 = append(s1, i)
        }

        if i < len(s2) {
            s2[i] = i * 2
        } else {
            s2 = append(s2, i*2)
        }
    }

    fmt.Printf("s1: %d, s2: %d\n", len(s1), len(s2))
}

这个程序中,首先通过 append 函数向两个切片 s1 和 s2 中添加了 10000000 个元素。然后,通过将切片设置为切片的零长度来重用底层数组,避免频繁的内存分配和释放操作。最后,通过直接访问切片中的元素来避免创建新的切片。

运行该程序,可以看到输出结果:

[root@devhost temp-test]# go run test-temp.go 
s1: 10000000, s2: 10000000
s1: 10000000, s2: 10000000
s1: 10000000, s2: 10000000
[root@devhost temp-test]# 

可以看到,在重用底层数组之后,程序的运行时间没有显著变化,并且内存使用也更加高效。

2.使用 sync.Pool 减少内存分配和释放的开销案例 假设我们需要对一个较大的二维数组进行遍历,并对每个元素进行处理。由于该数组的大小较大,为了减少内存分配和释放的开销,我们可以使用 sync.Pool 来缓存一部分已经分配的内存。

package main

import (
 "fmt"
 "math/rand"
 "sync"
 "time"
)

const (
 rows = 10000
 cols = 10000
)

func main() {
 // 生成二维数组
 rand.Seed(time.Now().UnixNano())
 arr := make([][]int, rows)
 for i := range arr {
  arr[i] = make([]int, cols)
  for j := range arr[i] {
   arr[i][j] = rand.Intn(1000)
  }
 }

 // 使用 sync.Pool 缓存一部分内存
 pool := sync.Pool{
  New: func() interface{} {
   return make([]int, cols)
  },
 }

 // 遍历二维数组并对每个元素进行处理
 for i := range arr {
  row := pool.Get().([]int)
  copy(row, arr[i])
  go func(row []int) {
   for j := range row {
    row[j] = process(row[j])
   }
   pool.Put(row)
  }(row)
 }

 fmt.Println("All elements are processed!")
}

// 对元素进行处理的函数
func process(x int) int {
 time.Sleep(time.Duration(x) * time.Millisecond)
 return x * 2
}

运行该程序,可以看到输出结果:

[root@devhost temp-test]# go run test-temp.go 
All elements are processed!

上述代码中,我们使用 sync.Pool 缓存了一部分大小为 cols 的整型数组,并在遍历二维数组时使用 Get() 方法从缓存中获取一个数组进行处理。由于 Get() 方法返回的是一个 interface{} 类型的对象,需要使用类型断言转换为正确的类型。在处理完一个数组后,我们将其归还到缓存池中,以便下一次使用时能够直接获取已经分配的内存,而不需要重新进行分配。

在处理元素时,我们还使用了 go 关键字开启了一个新的协程来执行处理操作,以充分利用 CPU 的多核能力。在处理完成后,我们将该数组归还到缓存池中,以便下一次使用。

通过使用 sync.Pool 缓存一部分已经分配的内存,可以避免频繁地进行内存分配和释放,从而提高程序的性能和效率。

3.使用 append 函数时预分配容量的案例 假设我们需要向一个空的切片中添加 1000000 个元素,并对每个元素进行处理。由于 append 函数会在需要时自动扩展切片的容量,频繁的扩容操作会带来较大的性能开销,因此我们可以在使用 append 函数前预分配切片的容量,以减少扩容操作的次数。

package main

import (
 "fmt"
 "math/rand"
 "time"
)

const (
 n = 1000000
)

func main() {
 // 预分配切片的容量
 data := make([]int, 0, n)

 // 向切片中添加元素并处理
 rand.Seed(time.Now().UnixNano())
 for i := 0; i < n; i++ {
  data = append(data, rand.Intn(1000))
 }
 for i := range data {
  data[i] = process(data[i])
 }

 fmt.Println("All elements are processed!")
}

// 对元素进行处理的函数
func process(x int) int {
 time.Sleep(time.Duration(x) * time.Millisecond)
 return x * 2
}

在上述代码中,我们使用 make([]int, 0, n) 预分配了一个切片,其长度为 0,容量为 n,即预留了 n 个元素的存储空间。在向切片中添加元素时,由于容量已经预分配好了,append 函数不会进行扩容操作,从而减少了性能开销。

需要注意的是,如果预分配的容量过小,仍然会进行扩容操作,从而导致性能下降。因此,预分配的容量应根据实际情况进行调整。

4.使用预分配切片容量的案例 假设我们有一个函数 readData(),可以读取一个很大的数据文件,并将数据逐行解析为字符串数组,我们需要将这些字符串进行进一步处理。由于我们无法事先确定数据文件的大小,因此我们需要动态地将读取到的字符串添加到切片中。

为了避免 append 函数频繁地进行扩容操作,我们可以在读取数据前,预估数据文件的大小,并预分配切片的容量。

package main

import (
 "fmt"
 "os"
 "bufio"
 "strings"
)

func main() {
 // 预估数据文件的大小
 const estSize = 1000000

 // 预分配切片的容量
 data := make([]string, 0, estSize)

 // 读取数据文件
 file, err := os.Open("data.txt")
 if err != nil {
  panic(err)
 }
 defer file.Close()

 scanner := bufio.NewScanner(file)
 for scanner.Scan() {
  line := scanner.Text()
  // 将读取到的字符串添加到切片中
  data = append(data, line)
 }

 if err := scanner.Err(); err != nil {
  panic(err)
 }

 // 对字符串进行处理
 for i, str := range data {
  data[i] = process(str)
 }

 fmt.Println("All strings are processed!")
}

// 对字符串进行处理的函数
func process(s string) string {
 return strings.ToUpper(s)
}

在上述代码中,我们使用 make([]string, 0, estSize) 预分配了一个空的字符串切片,其长度为 0,容量为 estSize,即预留了 estSize 个元素的存储空间。在读取数据文件时,由于容量已经预分配好了,append 函数不会进行扩容操作,从而减少了性能开销。需要注意的是,预估数据文件的大小应该根据实际情况进行调整,容量过小仍然会进行扩容操作,容量过大则会浪费空间。

以上就是关于“Go语言之切片内存如何优化”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注亿速云行业资讯频道。

推荐阅读:
  1. golang的基础语法介绍
  2. golang的内存分配

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

go语言

上一篇:Golang pipe在不同场景下怎么远程交互

下一篇:Android怎么使用ContentProvider实现跨进程通讯

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》