您好,登录后才能下订单哦!
这篇文章主要讲解了“C++ RBTree红黑树的性质与实现方法是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C++ RBTree红黑树的性质与实现方法是什么”吧!
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是平衡的 。(既最长路径长度不超过最短路径长度的 2 倍)
ps:树的路径是从根节点走到空节点(此处为NIL
节点)才算一条路径
每个结点不是红色就是黑色
根结点是黑色的
如果一个结点是红色的,则它的两个孩子结点是黑色的(没有连续的红色结点)
对于每个结点,从该节点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
每个叶子结点都是黑色的(此处的叶子结点指的是空节点,NIL节点),如果是空树,空节点也是黑色,符合第一个性质
理解最长路径长度不超过最短路径长度的 2 倍:
根据第三个性质:红黑树不会出现连续的红色结点,根据第四个性质:从每个结点到所有后代结点的路径上包含相同数目的黑色结点。
极端场景:最短路径上全黑,一条路径黑色节点的数量,最长路径上是一黑一红相间的路径
三叉链结构,对比AVL数节点的定义,把平衡因子替换成节点颜色,采用枚举的方式:
//结点颜色 enum Color { RED, BLACK, }; template<class K, class V > struct RBTreeNode { pair<K, V> _kv; RBTreeNode<K, V>* _left; RBTreeNode<K, V>* _right; RBTreeNode<K, V>* _parent; Color _col; RBTreeNode(const pair<K,V>& kv) :_kv(kv) ,_left(nullptr) ,_right(nullptr) ,_parent(nullptr) ,_col(RED) {} };
这里可以清楚的看到,构造结点时默认设置为红色,问题来了:
如果插入的是黑色结点那就是不符合第四个性质(路径上均包含相同的黑色结点),此时我们必须要去进行维护每条路径的黑色结点
如果插入的是红色结点那就是不符合第三个性质(没有出现连续的红色结点),但是我们并不一定需要调整,如果根刚好为黑色,就不需要进行调整。
所以如果插入为红色结点,不一定会破坏结构,但是如果插入黑色结点我们就必须去进行维护了
红黑树插入的操作部分和AVL树的插入一样:
找到待插入位置
将待插入结点插入到树中
调整:若插入结点的父结点是红色的,我们就需要对红黑树进行调整
前两步大差不差
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论
关键在于对红黑树进行调整:为了能够展示出各种情况,这里有一个基本的模型:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
情况一:cur为红,p为红,g为黑,u存在且为红 :
cur为红,p为红,g为黑,u存在且为红
关键看u结点,根结点的颜色为黑色,不能有连续的红色结点,所以上面的情况已经出现连续的红色结点了,此时我们需要进行调整:
把p结点改为黑色,同时把u结点也改为黑色(符合性质四:每条路径上的黑色节点数量相同),最后在把g结点改为红色;如果g是子树的话,g一定会有双亲,为了维持每条路径上黑色节点的数量,g必须变红,不然会多出一个黑色节点,在把g结点当做cur结点继续往上调整,当g为根结点时,在把g置为黑色:
代码实现:
while (parent && parent->_col == RED) { Node* grandfater = parent->_parent; if (parent == grandfater->_left) { Node* uncle = grandfater->_right; //情况一:u存在且为红 if (uncle && uncle->_col == RED) { parent->_col = uncle->_col = BLACK; grandfater->_col = RED; cur = grandfater; parent = cur->_parent; } else//其他情况 { } } else//parent==grandfater->_right { Node* uncle = grandfater->_left; if (uncle && uncle->_col == RED) { parent->_col = uncle->_col = BLACK; grandfater->_col = RED; cur = grandfater; parent = cur->_parent; } else { } } } _root->_col = BLACK;
情况二:cur为红,p为红,g为黑,u不存在/u为黑,gpc在同一侧:
此时u的情况:
如果u结点不存在,则cur一定是新增结点,因为如果cur不是新增结点:则cur和p一定有一个节点时黑色,就不满足每条路径都有相同的黑色结点的性质。
如果u结点存在,则其一定是黑色的,那么c节点原来的颜色一定是黑色,在其子树调整过程中变为了红色
如果p为g的左孩子,cur为p的左孩子,则进行右单旋转;
如果p为g的右孩子,cur为p的右孩子,则进行左单旋转,
同时,p、g变色–p变黑,g变红
以下情况:u不存在,cur为新增节点,进行右单旋:
以下情况:u结点存在且为黑:
情况三: cur为红,p为红,g为黑,u不存在/u为黑,gpc不在同一侧:
这时候我们就需要进行双旋了:
p为g的左孩子,cur为p的右孩子,对p做左单旋转;
p为g的右孩子,cur为p的左孩子,对p做右单旋转; 旋转之后则转换成了情况2,在继续进行调整即可
送上源码:
#pragma once #include <iostream> #include <assert.h> #include <time.h> using namespace std; enum Color { RED, BLACK, }; template<class K, class V > struct RBTreeNode { pair<K, V> _kv; RBTreeNode<K, V>* _left; RBTreeNode<K, V>* _right; RBTreeNode<K, V>* _parent; Color _col; RBTreeNode(const pair<K,V>& kv) :_kv(kv) ,_left(nullptr) ,_right(nullptr) ,_parent(nullptr) ,_col(RED) {} }; template<class K,class V> class RBTree { typedef RBTreeNode<K, V> Node; public: bool Insert(const pair<K, V>& kv) { if (_root == nullptr) { _root = new Node(kv); _root->_col = BLACK; return true; } Node* parent = nullptr; Node* cur = _root; while (cur) { if (cur->_kv.first < kv.first) { parent = cur; cur = cur->_right; } else if (cur->_kv.first > kv.first) { parent = cur; cur = cur->_left; } else { return false; } } cur = new Node(kv); cur->_col = RED; if (parent->_kv.first < kv.first) { parent->_right = cur; cur->_parent = parent; } else { parent->_left = cur; cur->_parent = parent; } while (parent && parent->_col == RED) { Node* grandfater = parent->_parent; if (parent == grandfater->_left) { Node* uncle = grandfater->_right; //情况一:u存在且为红 if (uncle && uncle->_col == RED) { parent->_col = uncle->_col = BLACK; grandfater->_col = RED; //向上调整 cur = grandfater; parent = cur->_parent; } else { //情况2 if (cur == parent->_left) { RotateR(grandfater); parent->_col = BLACK; grandfater->_col = RED; } //情况3 else { // g // p // c RotateL(parent); RotateR(grandfater); cur->_col = BLACK; grandfater->_col = RED; } break; } } else//parent==grandfater->_right { Node* uncle = grandfater->_left; //情况1:u存在且为红色 if (uncle && uncle->_col == RED) { uncle->_col = parent->_col = BLACK; grandfater->_col = RED; //向上调整 cur = grandfater; parent = cur->_parent; } else { //情况2:u不存在/u存在为黑色 //g // p // c if (cur == parent->_right) { RotateL(grandfater); grandfater->_col = RED; parent->_col = BLACK; } //情况3 // g // p // c else { RotateR(parent); RotateL(grandfater); cur->_col = BLACK; grandfater->_col = RED; } break; } } } //根变黑 _root->_col = BLACK; return true; } void RotateL(Node* parent) { Node* subR = parent->_right; Node* subRL = subR->_left; parent->_right = subRL; if (subRL) subRL->_parent = parent; Node* ppNode = parent->_parent; subR->_left = parent; parent->_parent = subR; if (ppNode == nullptr) { _root = subR; _root->_parent = nullptr; } else { if (ppNode->_left == parent) { ppNode->_left = subR; } else { ppNode->_right = subR; } subR->_parent = ppNode; } } void RotateR(Node* parent) { Node* subL = parent->_left; Node* subLR = subL->_right; parent->_left = subLR; if (subLR) subLR->_parent = parent; Node* ppNode = parent->_parent; parent->_parent = subL; subL->_right = parent; if (ppNode == nullptr) { _root = subL; _root->_parent = nullptr; } else { if (ppNode->_left == parent) { ppNode->_left = subL; } else { ppNode->_right = subL; } subL->_parent = ppNode; } } void InOrder() { _InOrder(_root); } void _InOrder(Node* root) { if (root == nullptr) return; _InOrder(root->_left); cout << root->_kv.first << ":" << root->_kv.second << endl; _InOrder(root->_right); } bool Check(Node*root,int blackNum,int ref) { if (root == nullptr) { //cout << blackNum << endl; if (blackNum != ref) { cout << "违反规则:本条路径的黑色结点的数量根最左路径不相等" << endl; return false; } return true; } if (root->_col == RED && root->_parent->_col == RED) { cout << "违反规则:出现连续的红色结点" << endl; return false; } if (root->_col == BLACK) { ++blackNum; } return Check(root->_left,blackNum,ref) && Check(root->_right,blackNum,ref); } bool IsBalance() { if (_root == nullptr) { return true; } if (_root->_col != BLACK) { return false; } int ref = 0; Node* left = _root; while (left) { if (left->_col == BLACK) { ++ref; } left = left->_left; } return Check(_root,0,ref); } private: Node* _root = nullptr; }; void TestRBTree1() { //int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 }; int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 }; //int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 }; RBTree<int, int> t; for (auto e : a) { t.Insert(make_pair(e, e)); } t.InOrder(); cout << t.IsBalance() << endl; } void TestRBTree2() { srand(time(0)); const size_t N = 100000; RBTree<int, int> t; for (size_t i = 0; i < N; i++) { size_t x = rand(); t.Insert(make_pair(x, x)); } cout << t.IsBalance() << endl; }
感谢各位的阅读,以上就是“C++ RBTree红黑树的性质与实现方法是什么”的内容了,经过本文的学习后,相信大家对C++ RBTree红黑树的性质与实现方法是什么这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。