怎么用C语言实现任务调度

发布时间:2023-04-19 11:23:02 作者:iii
来源:亿速云 阅读:92

这篇文章主要介绍“怎么用C语言实现任务调度”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“怎么用C语言实现任务调度”文章能帮助大家解决问题。

任务调度模式结构

整体上的结构属于线性结构,结合链表和定时器来实现,我使用的是sysTick这个滴答时钟,1ms的频率,功能比较简单,容易理解。

分片

分片的模式,主要体现在函数分片和时间分片在我之前就有使用在函数中,主要的思路是,把函数功能切片,分为几个小部分,每次执行时按次序执行小部分,对于没有时序要求的函数来说,可以把一个占用CPU大的功能分摊开来实现,从而避免有些地方耗时长的问题。对于时间分片,其实就是定时器的一种应用,实际上,函数分片在执行的时候已经是一种时间分片了,不过现在加上人为的控制在里面了。

下面是函数分片的一般结构:

void func(char *fos,...){
    static char step=0;//顺序控制变量,自由度比较高,可乱序,可循环,可延迟执行
    switch(step){
        case 0:{
            //...
            step++;
            break;
        }
        case 1:{
            //...
            step++;
            break;
        }
        //...
        default:{
            //step++;//可以借助default实现延时的效果,即跳过几次空白step
            break;
        }

    }
    return;
}

其中添加的参数变量*fos必要的,因为就是通过传入每个任务的这个标志位来判断是否运行结束,而其他的参数,就得基于具体任务做不一样的处理了。

轮询

运行框图

怎么用C语言实现任务调度

可以看到这个框图是一个头尾相连的闭环结构,从头节点依次运行到尾节点后再从头循环往复执行下去。

轮询函数

void loop_task(void){
	static Task_Obj *tasknode;
	
	tasknode=task_curnode->next;//repoint the curnode to the next
	if(tasknode==NULL){//tasknode is null,only the headnode have the attr
		return;//express the task space is none
	}
	else if(tasknode->task_type==TYPE_HEAD){//tasknode is headnode
		task_curnode=tasknode;
		return;
	}
	else{
		if(tasknode->run_type == RUN_WAIT){
            //等待型任务,通过ready标志来确定是否执行,否则就跳过
			if(!tasknode->ready){
				if(task_curnode->next !=NULL){
					task_curnode=task_curnode->next;
					return;
				}
			}
		}
		if(tasknode->task_status==STATUS_INIT){

			tasknode->tickstart=HAL_GetTick();//获取tick
			tasknode->task_status=STATUS_RUN;

		}
		else if(tasknode->task_status==STATUS_RUN){
			if((HAL_GetTick() - tasknode->tickstart) > (uint32_t)tasknode->task_tick){
				tasknode->task_name(&(tasknode->task_fos));//run the step task,transfer the fos
				tasknode->tickstart+=(uint32_t)tasknode->task_tick;//update the tickstart
			}
		}
		
	}
	if(tasknode->task_fos==FOS_FLAG){
		
		tasknode->ready=0;
		if(tasknode->waittask!=NULL){
            //置位该任务绑定的等待的任务准备运行标志位,标识可以准备运行了
			tasknode->waittask->ready=1;
		}
        //运行结束就删掉该任务
		delete_task(tasknode);
	}
	else if(tasknode->task_fos==FOC_FLAG){
        //循环运行该任务
		tasknode->task_status=STATUS_INIT;//continue running from start
		tasknode->task_fos=0;//RESET fos
		
	}
	if(task_curnode->next !=NULL){
		if(task_curnode->next->run_type==RUN_FORCE) return;//force-type's task
		
		else task_curnode=task_curnode->next;
		
	}
	

}

其中有几个运行态和标志位

#define FOS_FLAG 99//运行结束标志
#define FOC_FLAG 100//运行结束后再次执行,相当于循环运行
#define TYPE_NOMAL 0//标识一般任务类型
#define TYPE_HEAD 1//标识头任务类型
#define TYPE_END 2//标识尾任务类型
#define RUN_NORMAL 0//一般轮询模式
#define RUN_FORCE 1//强制运行该任务,运行结束才继续下一个任务
#define RUN_WAIT 2//等待指定的任务结束,才可以被运行
#define STATUS_INIT 0//任务的准备阶段,用于获取起始时间
#define STATUS_RUN 1//任务运行阶段
#define STATUS_UNVAILED 2//无效状态

运行时对时间间隔tick的把握还有点问题,这个等待后面有机会优化下。

调度实现

任务链表结构

typedef struct TASK_CLASS{
	void (*task_name)(char *taskfos,...);//任务函数
	int task_tick;//任务的时间分片间隔
	uint32_t tickstart;//起始时间点,每次执行完须加上一个tick
	char task_fos;//运行结束标志
	char task_type;//任务类型变量
	char task_status;//任务状态
	char run_type;//运行状态
	char ready;//准备运行标志位
	struct TASK_CLASS *next;//下一任务
	struct TASK_CLASS *waittask;//等待执行的任务
} Task_Obj;

添加任务

add_task

void add_task(void (*taskname)(char *,...),int tasktick,int runtype){//可变参,这里未做处理
Task_Obj *tasknode,*tmpnode;
char i;

tasknode = (Task_Obj*)malloc(sizeof(Task_Obj));

tasknode->task_name=taskname;
tasknode->task_tick=tasktick;
tasknode->task_fos=0;
tasknode->task_status=STATUS_INIT;//initial status
tasknode->task_type=TYPE_END; //set the new node to endnode
tasknode->run_type=runtype;
tasknode->next=&task_headnode;//the endnode point to the headnode

tmpnode=&task_headnode;
if(task_num==0){
	tmpnode->next=tasknode;
	task_num++;
	return;
}
for(i=0;i<task_num;i++){
	tmpnode=tmpnode->next;//reach the endnode
}
tmpnode->task_type=TYPE_NOMAL;//turn the last endnode to the normal node
tmpnode->next=tasknode;
task_num++;
}

add_wait_task

void add_wait_task(void (*taskname)(char *),void (*waitname)(char *),int tasktick){
Task_Obj *tmpnode,*tasknode;
char i,pos;

tmpnode=&task_headnode;
for(i=0;i<task_num;i++){
	tmpnode=tmpnode->next;//reach the endnode
	if(tmpnode->task_name==taskname){
		pos=i;//获取要等待任务的位置
		break;
	}
}

tasknode = (Task_Obj*)malloc(sizeof(Task_Obj));

tasknode->task_name=waitname;
tasknode->task_tick=tasktick;
tasknode->task_fos=0;
tasknode->task_status=STATUS_INIT;//initial status
tasknode->task_type=TYPE_END; //set the new node to endnode
tasknode->run_type=RUN_WAIT;//任务为等待运行
tasknode->ready=0;
tasknode->next=&task_headnode;//the endnode point to the headnode

tmpnode->waittask=tasknode;//获取新建的等待执行的任务地址,在运行结束后把等待执行的任务的准备运行标志位置1

tmpnode=&task_headnode;
if(task_num==0){
	tmpnode->next=tasknode;
	task_num++;
	return;
}
for(i=0;i<task_num;i++){
	tmpnode=tmpnode->next;//reach the endnode
}
tmpnode->task_type=TYPE_NOMAL;//turn the last endnode to the normal node
tmpnode->next=tasknode;
task_num++;

}

删除任务

delete_task(局限性大,只针对当前运行的任务而言)

void delete_task(Task_Obj *taskobj){
if(task_curnode->task_type==TYPE_HEAD && task_num < 2){//if curnode is headnode,and tasknum=1
	task_curnode->next=NULL;
}
else{
	task_curnode->next=taskobj->next;//repoint the curnode next
}
free(taskobj);//free the space of where the taskobj pointed

task_num--;

}

delete_task_withname(删除指定任务名的任务)

void delete_task_withname(void (*taskname)(char *)){
Task_Obj *tmpnode,*tmpnode2;
char i,pos;

tmpnode=&task_headnode;
for(i=0;i<task_num;i++){
	tmpnode=tmpnode->next;//reach the endnode
	if(tmpnode->task_name==taskname){
		pos=i;
		break;
	}
}
if(i==task_num) return;
tmpnode=&task_headnode;
for(i=0;i<pos+1;i++){
	tmpnode2=tmpnode;
	tmpnode=tmpnode->next;
}
if(tmpnode->next==NULL){//if tmpnode is endnode
	tmpnode2->next=&task_headnode;
}
else{
	tmpnode2->next=tmpnode->next;//repoint the curnode next
}
task_num--;
free(tmpnode);
}

初始化任务空间

void non_task(char *taskfos){
	return;
}

void init_taskspace(void){
	task_headnode.task_name=non_task;
	task_headnode.task_type=TYPE_HEAD;
	task_headnode.task_status=STATUS_UNVAILED;
	task_headnode.next=NULL;
	task_curnode=&task_headnode;//头节点是没有任务需要执行的
	task_num=0;
}

调用实例

add_task(task1,500,RUN_NORMAL);//500ms执行一次task1任务
add_wait_task(task1,task2,500);//task2等待task1结束才会执行,运行的时间间隔为500ms
delete_task_withname(task1);//删除task1任务

while(1){
    //...
    loop_task();//任务轮询
}

关于“怎么用C语言实现任务调度”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注亿速云行业资讯频道,小编每天都会为大家更新不同的知识点。

推荐阅读:
  1. 如何用C语言写一个TCP
  2. 如何理解C语言编写Http服务器中的Request

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

c语言

上一篇:C语言数据结构的时间复杂度和空间复杂度实例分析

下一篇:C语言怎么实现对文件进行操作

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》