Python集合set实现原理源码分析

发布时间:2023-04-21 17:36:56 作者:iii
来源:亿速云 阅读:94

本篇内容介绍了“Python集合set实现原理源码分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

数据结构介绍
typedef struct {
    PyObject_HEAD
    Py_ssize_t fill;            /* Number active and dummy entries*/
    Py_ssize_t used;            /* Number active entries */
    /* The table contains mask + 1 slots, and that's a power of 2.
     * We store the mask instead of the size because the mask is more
     * frequently needed.
     */
    Py_ssize_t mask;
    /* The table points to a fixed-size smalltable for small tables
     * or to additional malloc'ed memory for bigger tables.
     * The table pointer is never NULL which saves us from repeated
     * runtime null-tests.
     */
    setentry *table;
    Py_hash_t hash;             /* Only used by frozenset objects */
    Py_ssize_t finger;          /* Search finger for pop() */
    setentry smalltable[PySet_MINSIZE]; // #define PySet_MINSIZE 8
    PyObject *weakreflist;      /* List of weak references */
} PySetObject;
typedef struct {
    PyObject *key;
    Py_hash_t hash;             /* Cached hash code of the key */
} setentry;
static PyObject _dummy_struct;
#define dummy (&_dummy_struct)

上面的数据结果用图示如下图所示:

Python集合set实现原理源码分析

上面各个字段的含义如下所示:

创建集合对象

首先先了解一下创建一个集合对象的过程,和前面其他的对象是一样的,首先先申请内存空间,然后进行相关的初始化操作。

这个函数有两个参数,使用第一个参数申请内存空间,然后后面一个参数如果不为 NULL 而且是一个可迭代对象的话,就将这里面的对象加入到集合当中。

static PyObject *
make_new_set(PyTypeObject *type, PyObject *iterable)
{
    PySetObject *so = NULL;
    /* create PySetObject structure */
    so = (PySetObject *)type->tp_alloc(type, 0);
    if (so == NULL)
        return NULL;
    // 集合当中目前没有任何对象,因此 fill 和 used 都是 0
    so->fill = 0;
    so->used = 0;
    // 初始化哈希表当中的数组长度为 PySet_MINSIZE 因此 mask = PySet_MINSIZE - 1
    so->mask = PySet_MINSIZE - 1;
    // 让 table 指向存储 entry 的数组
    so->table = so->smalltable;
    // 将哈希值设置成 -1 表示还没有进行计算
    so->hash = -1;
    so->finger = 0;
    so->weakreflist = NULL;
    // 如果 iterable 不等于 NULL 则需要将它指向的对象当中所有的元素加入到集合当中
    if (iterable != NULL) {
        // 调用函数 set_update_internal 将对象 iterable 当中的元素加入到集合当中
        if (set_update_internal(so, iterable)) {
            Py_DECREF(so);
            return NULL;
        }
    }
    return (PyObject *)so;
}
往集合当中加入数据

首先我们先大致理清楚往集合当中插入数据的流程:

static PyObject *
set_add(PySetObject *so, PyObject *key)
{
    if (set_add_key(so, key))
        return NULL;
    Py_RETURN_NONE;
}
static int
set_add_key(PySetObject *so, PyObject *key)
{
    setentry entry;
    Py_hash_t hash;
    // 这里就查看一下是否是字符串,如果是字符串直接拿到哈希值
    if (!PyUnicode_CheckExact(key) ||
        (hash = ((PyASCIIObject *) key)->hash) == -1) {
      	// 如果不是字符串则需要调用对象自己的哈希函数求得对应的哈希值
        hash = PyObject_Hash(key);
        if (hash == -1)
            return -1;
    }
    // 创建一个 entry 对象将这个对象加入到哈希表当中
    entry.key = key;
    entry.hash = hash;
    return set_add_entry(so, &entry);
}
static int
set_add_entry(PySetObject *so, setentry *entry)
{
    Py_ssize_t n_used;
    PyObject *key = entry->key;
    Py_hash_t hash = entry->hash;
    assert(so->fill <= so->mask);  /* at least one empty slot */
    n_used = so->used;
    Py_INCREF(key);
    // 调用函数 set_insert_key 将对象插入到数组当中
    if (set_insert_key(so, key, hash)) {
        Py_DECREF(key);
        return -1;
    }
    // 这里就是哈希表的核心的扩容机制
    if (!(so->used > n_used && so->fill*3 >= (so->mask+1)*2))
        return 0;
    // 这是扩容大小的逻辑
    return set_table_resize(so, so->used>50000 ? so->used*2 : so->used*4);
}
static int
set_insert_key(PySetObject *so, PyObject *key, Py_hash_t hash)
{
    setentry *entry;
    // set_lookkey 这个函数便是插入的核心的逻辑的实现对应的实现函数在下方
    entry = set_lookkey(so, key, hash);
    if (entry == NULL)
        return -1;
    if (entry->key == NULL) {
        /* UNUSED */
        entry->key = key;
        entry->hash = hash;
        so->fill++;
        so->used++;
    } else if (entry->key == dummy) {
        /* DUMMY */
        entry->key = key;
        entry->hash = hash;
        so->used++;
    } else {
        /* ACTIVE */
        Py_DECREF(key);
    }
    return 0;
}
// 下面的代码就是在执行我们在前面所谈到的逻辑,直到找到相同的 key 或者空位置才退出 while 循环
static setentry *
set_lookkey(PySetObject *so, PyObject *key, Py_hash_t hash)
{
    setentry *table = so->table;
    setentry *freeslot = NULL;
    setentry *entry;
    size_t perturb = hash;
    size_t mask = so->mask;
    size_t i = (size_t)hash & mask; /* Unsigned for defined overflow behavior */
    size_t j;
    int cmp;
    entry = &table[i];
    if (entry->key == NULL)
        return entry;
    while (1) {
        if (entry->hash == hash) {
            PyObject *startkey = entry->key;
            /* startkey cannot be a dummy because the dummy hash field is -1 */
            assert(startkey != dummy);
            if (startkey == key)
                return entry;
            if (PyUnicode_CheckExact(startkey)
                && PyUnicode_CheckExact(key)
                && unicode_eq(startkey, key))
                return entry;
            Py_INCREF(startkey);
            // returning -1 for error, 0 for false, 1 for true
            cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
            Py_DECREF(startkey);
            if (cmp < 0)                                          /* unlikely */
                return NULL;
            if (table != so->table || entry->key != startkey)     /* unlikely */
                return set_lookkey(so, key, hash);
            if (cmp > 0)                                          /* likely */
                return entry;
            mask = so->mask;                 /* help avoid a register spill */
        }
        if (entry->hash == -1 && freeslot == NULL)
            freeslot = entry;
        if (i + LINEAR_PROBES <= mask) {
            for (j = 0 ; j < LINEAR_PROBES ; j++) {
                entry++;
                if (entry->key == NULL)
                    goto found_null;
                if (entry->hash == hash) {
                    PyObject *startkey = entry->key;
                    assert(startkey != dummy);
                    if (startkey == key)
                        return entry;
                    if (PyUnicode_CheckExact(startkey)
                        && PyUnicode_CheckExact(key)
                        && unicode_eq(startkey, key))
                        return entry;
                    Py_INCREF(startkey);
                    // returning -1 for error, 0 for false, 1 for true
                    cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
                    Py_DECREF(startkey);
                    if (cmp < 0)
                        return NULL;
                    if (table != so->table || entry->key != startkey)
                        return set_lookkey(so, key, hash);
                    if (cmp > 0)
                        return entry;
                    mask = so->mask;
                }
                if (entry->hash == -1 && freeslot == NULL)
                    freeslot = entry;
            }
        }
        perturb >>= PERTURB_SHIFT; // #define PERTURB_SHIFT 5
        i = (i * 5 + 1 + perturb) & mask;
        entry = &table[i];
        if (entry->key == NULL)
            goto found_null;
    }
  found_null:
    return freeslot == NULL ? entry : freeslot;
}
哈希表数组扩容

在 cpython 当中对于给哈希表数组扩容的操作,很多情况下都是用下面这行代码,从下面的代码来看对应扩容后数组的大小并不简单,当你的哈希表当中的元素个数大于 50000 时,新数组的大小是原数组的两倍,而如果你哈希表当中的元素个数小于等于 50000,那么久扩大为原来长度的四倍,这个主要是怕后面如果继续扩大四倍的话,可能会浪费很多内存空间。

set_table_resize(so, so-&gt;used&gt;50000 ? so-&gt;used*2 : so-&gt;used*4);

首先需要了解一下扩容机制,当哈希表需要扩容的时候,主要有以下两个步骤:

这里需要注意的是因为数组的长度发生了变化,但是 key 的哈希值却没有发生变化,因此在新的数组当中数据对应的下标位置也会发生变化,因此需重新将所有的对象重新进行一次插入操作,下面的整个操作相对来说比较简单,这里不再进行说明了。

static int
set_table_resize(PySetObject *so, Py_ssize_t minused)
{
    Py_ssize_t newsize;
    setentry *oldtable, *newtable, *entry;
    Py_ssize_t oldfill = so->fill;
    Py_ssize_t oldused = so->used;
    int is_oldtable_malloced;
    setentry small_copy[PySet_MINSIZE];
    assert(minused >= 0);
    /* Find the smallest table size > minused. */
    /* XXX speed-up with intrinsics */
    for (newsize = PySet_MINSIZE;
         newsize <= minused && newsize > 0;
         newsize <<= 1)
        ;
    if (newsize <= 0) {
        PyErr_NoMemory();
        return -1;
    }
    /* Get space for a new table. */
    oldtable = so->table;
    assert(oldtable != NULL);
    is_oldtable_malloced = oldtable != so->smalltable;
    if (newsize == PySet_MINSIZE) {
        /* A large table is shrinking, or we can't get any smaller. */
        newtable = so->smalltable;
        if (newtable == oldtable) {
            if (so->fill == so->used) {
                /* No dummies, so no point doing anything. */
                return 0;
            }
            /* We're not going to resize it, but rebuild the
               table anyway to purge old dummy entries.
               Subtle:  This is *necessary* if fill==size,
               as set_lookkey needs at least one virgin slot to
               terminate failing searches.  If fill < size, it's
               merely desirable, as dummies slow searches. */
            assert(so->fill > so->used);
            memcpy(small_copy, oldtable, sizeof(small_copy));
            oldtable = small_copy;
        }
    }
    else {
        newtable = PyMem_NEW(setentry, newsize);
        if (newtable == NULL) {
            PyErr_NoMemory();
            return -1;
        }
    }
    /* Make the set empty, using the new table. */
    assert(newtable != oldtable);
    memset(newtable, 0, sizeof(setentry) * newsize);
    so->fill = 0;
    so->used = 0;
    so->mask = newsize - 1;
    so->table = newtable;
    /* Copy the data over; this is refcount-neutral for active entries;
       dummy entries aren't copied over, of course */
    if (oldfill == oldused) {
        for (entry = oldtable; oldused > 0; entry++) {
            if (entry->key != NULL) {
                oldused--;
                set_insert_clean(so, entry->key, entry->hash);
            }
        }
    } else {
        for (entry = oldtable; oldused > 0; entry++) {
            if (entry->key != NULL && entry->key != dummy) {
                oldused--;
                set_insert_clean(so, entry->key, entry->hash);
            }
        }
    }
    if (is_oldtable_malloced)
        PyMem_DEL(oldtable);
    return 0;
}
static void
set_insert_clean(PySetObject *so, PyObject *key, Py_hash_t hash)
{
    setentry *table = so->table;
    setentry *entry;
    size_t perturb = hash;
    size_t mask = (size_t)so->mask;
    size_t i = (size_t)hash & mask;
    size_t j;
    // #define LINEAR_PROBES 9
    while (1) {
        entry = &table[i];
        if (entry->key == NULL)
            goto found_null;
        if (i + LINEAR_PROBES <= mask) {
            for (j = 0; j < LINEAR_PROBES; j++) {
                entry++;
                if (entry->key == NULL)
                    goto found_null;
            }
        }
        perturb >>= PERTURB_SHIFT;
        i = (i * 5 + 1 + perturb) & mask;
    }
  found_null:
    entry->key = key;
    entry->hash = hash;
    so->fill++;
    so->used++;
}
从集合当中删除元素 pop

从集合当中删除元素的代码如下所示:

static PyObject *
set_pop(PySetObject *so)
{
    /* Make sure the search finger is in bounds */
    Py_ssize_t i = so->finger & so->mask;
    setentry *entry;
    PyObject *key;
    assert (PyAnySet_Check(so));
    if (so->used == 0) {
        PyErr_SetString(PyExc_KeyError, "pop from an empty set");
        return NULL;
    }
    while ((entry = &so->table[i])->key == NULL || entry->key==dummy) {
        i++;
        if (i > so->mask)
            i = 0;
    }
    key = entry->key;
    entry->key = dummy;
    entry->hash = -1;
    so->used--;
    so->finger = i + 1;         /* next place to start */
    return key;
}

上面的代码相对来说也比较清晰,从 finger 开始寻找存在的元素,并且删除他。我们在前面提到过,当一个元素被删除之后他会被赋值成 dummy 而且哈希值为 -1 。

“Python集合set实现原理源码分析”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

推荐阅读:
  1. 安装MySQL-python模块执行数据库操作方法
  2. python怎么取固定格式文件

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

python set

上一篇:怎么使用Python实现自动驾驶系统

下一篇:Python Matplotlib常用方法有哪些

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》