您好,登录后才能下订单哦!
密码登录
登录注册
点击 登录注册 即表示同意《亿速云用户服务条款》
119. Pascal's Triangle II
Given an index k, return the kth row of the Pascal's triangle.
For example, given k = 3,
Return [1,3,3,1]
.
Note:
Could you optimize your algorithm to use only O(k) extra space?
代码如下:(使用双数组处理,未优化版)
class Solution { public: vector<int> getRow(int rowIndex) { vector<int> curVec; vector<int> nextVec; if(rowIndex < 0) return curVec; for(int i = 0;i <= rowIndex; i++) { for(int j = 0;j<=i;j++) { if(j == 0) nextVec.push_back(1); else { if(j >= curVec.size()) nextVec.push_back(curVec[j-1]); else nextVec.push_back(curVec[j] + curVec[j-1]); } } curVec.swap(nextVec); nextVec.clear(); } return curVec; } };
使用思路:
The basic idea is to iteratively update the array from the end to the beginning.
从后到前来更新结果数组。
参考自:https://discuss.leetcode.com/topic/2510/here-is-my-brief-o-k-solution
class Solution { public: vector<int> getRow(int rowIndex) { vector<int> result(rowIndex+1, 0); result[0] = 1; for(int i=1; i<rowIndex+1; i++) for(int j=i; j>=1; j--) result[j] += result[j-1]; return result; } };
2016-08-12 10:46:10
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。