数据结构-----堆的基本操作和应用

发布时间:2020-07-18 09:23:11 作者:马尾和披肩
来源:网络 阅读:363

                       (一)用仿函数实现大堆小堆

堆数据结构是一种数组对象,它可以被视为一棵完全二叉树结构。

堆结构的二叉树存储是

最大堆:每个父节点的都大于孩子节点。

最小堆:每个父节点的都小于孩子节点。


仿函数(functor),就是使一个类的使用看上去象一个函数。其实现就是类中实现一个operator(),这个类就有了类似函数的行为,就是一个仿函数类了。
在实现大,小堆的过程中,有些功能的的代码,会在不同的成员函数中用到,想复用这些代码,有两种途径。

 1)公共的函数,这是一个解决方法,不过函数用到的一些变量,就可能成为公共的全局变量,再说为了复用这么一片代码,就要单立出一个函数,也不是很好维护。

 2)仿函数,写一个简单类,除了那些维护一个类的成员函数外,就只是实现一个operator(),在类实例化时,就将要用的,非参数的元素传入类中。

在C++里,我们通过在一个类中重载括号运算符的方法使用一个函数对象而不是一个普通函数

Heap.h

#include <iostream>  
#include <algorithm>  
  
using namespace std;  
template<typename T>  
class display  
{  
public:  
    void operator()(const T &x)  
    {  
        cout<<x<<" ";   
    }   
};   
  
  
int main()  
{  
    int ia[]={1,2,3,4,5};  
    for_each(ia,ia+5,display<int>());   
      
    return 0;   
}

用仿函数实现大堆,小堆的基本结构

#include<iostream>
#include<vector>
using namespace std;

template<class T>
struct Less//小于
{
	bool operator()(const T&l,const T&r)
	{
	return l<r;
	}
};

template<class T>
struct Greater
{
	bool operator()(const T&l,const T&r)
	{
	return l>r;
	}
};
template<class T,class Comper=Greater<T>>//默认建大堆
class Heap
{
private:
	vector<T> _a;
public:

	Heap(const T* a,size_t size)
	{
		assert(a);
		//将数组中的数据压入栈中
		for(i=0;i<size;i++)
		{
		_a.push_back(a[i]);
		}
		//建大堆
		for(int i=(_a.size()-2)/2;i>=0;i--)
		{
		//向下调整
		_AdjustDown(i);
		}
	}
	//向堆中插入数据
	void push(const T& x)
	{
	_a.push_back (x);
	_Adjustup(_a.size()-1)
	}
/********************
在弹出的时候使用的方法是
先将完全二叉树的根节点与最后一个叶子节点交换,
弹出当前的叶子节点,然后在向下调整
************************/
	void pop()
	{
	swap(_a[0],_a[_a.size()-1]);
	_a.pop_back ();
	_AdjustDown(0);
	}
	size_t Size()//求堆的大小
	{
	  return _a.size();
	}

	bool Empty()//堆是否为空
	{
	return _a.empty();
	}
protected:
	void _AdjustDown(size_t parent)
	{
		size_t child=2*parent+1;
		while(child<_a.size())
		{
			Comper com;
			//找出两个孩子中最大的一个
			if(com(_a[child+1],_a[child]) && child+1<_a.size())//因为是完全二叉树所以右孩子可能不存在
			{
			child=child+1;
			}
			//如果孩子大于父亲则交换继续往下调整
			if(com(_a[child],_a[parent]))
			{
			swap(_a[child],_a[parent]);
			parent=child;
			child=2*parent+1;
			}
			//否则满足大根堆,退出循环
			else
			{
			break;
			}
		}
	
	}

	//向上调整
	void _Adjustup(size_t child)
	{
		 size_t parent=(child-1)/2;
		 while(child>0)//不能写成while(parent>0),因为child为size_t 类型,会构成死循环
		 {
			 Comper com;
			 //如果插入的子节点大于根节点,则交换
			 if(com(_a[child],_a[parent]))
			 {
			 swap(_a[child],_a[parent]);
			 child=parent;
			 parent=(child-1)/2;
			 }
			 //否则满足大堆,退出循环
			 else
			 {
			 break;
			 }
		 }
	}
};


                                     (二)堆排序 


#define _CRT_SECURE_NO_WARNINGS 1

#include<iostream>
#include<assert.h>
using namespace std;

//建初堆,大堆
void AdjustDown(int a[],int n,int parent)
{
	int child=parent*2+1;
	while(child<n)
	{
		if(child+1<n&&a[child]<a[child+1])
		{
		++child;
		}

		if(a[child]>a[parent])
		{
		swap(a[child],a[parent]);
		parent=child;
		child=parent*2+1;
		}
		else
		{
		break;
		}
	}
}

void HeapSort(int a[],int n)
{
	assert(a);
	//建大堆
	for(int i=(n-2)/2;i>=0;i--)
	{
	AdjustDown(a,n,i);
	}
	//选出一个数据交换到末尾,利用帅选法将前N-i个元素重新帅选建成一个堆
	for(int i=n-1;i>0;i--)
	{
	swap(a[0],a[i]);
	AdjustDown(a,i,0);
	}

}

void test()
{
	int a[8]={98,77,35,62,55,14,35,48};
	int size=sizeof(a)/sizeof(a[0]);
	HeapSort(a,size);
	for(int i=0;i<size;i++)
	{
	cout<<a[i]<<" ";

	}
	cout<<endl;
}
int main()
{
	test();
	system("pause");
	return 0;

}



推荐阅读:
  1. 数据结构之堆(Heap)的实现
  2. 【数据结构】——堆及其应用

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

应用 数据结构 基本操作

上一篇:hadoop分布式集群部署以及过程中遇到的一些坑

下一篇:详解C#对PDF文档加密与解密

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》