Java多线程与并发笔记

发布时间:2020-07-21 08:03:09 作者:ZeroOne01
来源:网络 阅读:1065

synchronized

synchronized主要是用于解决线程安全问题的,而线程安全问题的主要诱因有如下两点:

解决线程安全问题的根本方法:

所以互斥锁是解决问题的办法之一,互斥锁的特性如下:

互斥性:即在同一时间只允许一个线程持有某个对象锁,通过这种特性来实现多线程的协调机制,这样在同一时间只有一个线程对需要同步的代码块(复合操作)进行访问。互斥性也称为操作的原子性
可见性:必须确保在锁被释放之前,对共享变量所做的修改,对于随后获得该锁的另一个线程是可见的(即在获得锁时应获得最新共享变量的值),否则另一个线程可能是在本地缓存的某个副本上继续操作,从而引起数据不一致问题

而synchronized就可以实现互斥锁的特性,不过需要注意的是synchronized锁的不是代码,而是对象。

根据获取的锁可以分为两类:

对象锁和类锁的总结:

  1. 有线程访问对象的同步块代码时,另外的线程可以访问该对象的非同步代码块
  2. 若锁住的是同一个对象,一个线程在访问对象的同步代码块时,另一个访问对象的同步代码块的线程会被阻塞
  3. 若锁住的是同一个对象,一个线程在访问对象的同步方法时,另一个访问对象同步方法的线程会被阻塞
  4. 若锁住的是同一个对象,一个线程在访问对象的同步块时,另一个访问对象同步方法的线程会被阻塞,反之亦然
  5. 同一个类的不同对象的对象锁互不干扰
  6. 类锁由于也是一把特殊的对象锁,因此表现与上述1,2,3,4一致,而由于一个类只有一把对象锁,所以同一个类的不同对象使用类锁将会是同步的
  7. 类锁和对象锁互补干扰,因为类对象和实例对象不是同一个对象

synchronized底层实现原理

实现synchronized需要依赖两个基础概念:

Java对象在内存中的布局主要分为三块区域:

synchronized使用的锁对象是存储在Java对象头里的,对象头结构如下:
Java多线程与并发笔记

由于对象头信息是与对象自身定义的数据没有关系的额外存储成本,考虑到JVM的空间效率,Mark Word被设计为非固定的数据结构以便存储更多有效的数据,它会根据对象自身的状态赋予自己的存储空间:
Java多线程与并发笔记

简单介绍了对象头,接着我们来了解一下Monitor,每个Java对象天生自带了一把看不见的锁,它叫做内部锁或Monitor锁。Monitor的主要实现代码在ObjectMonitor.hpp中:
Java多线程与并发笔记

Monitor锁的竞争、获取与释放:
Java多线程与并发笔记

然后我们从字节码层面上看一下synchronized,将如下代码通过javac编译成class文件:

package com.example.demo.thread;

/**
 * @author 01
 * @date 2019-07-20
 **/
public class SyncBlockAndMethod {

    public void syncsTask() {
        synchronized (this) {
            System.out.println("Hello syncsTask");
        }
    }

    public synchronized void syncTask() {
        System.out.println("Hello syncTask");
    }
}

然后通过 javap -verbose 将class文件反编译成可阅读的字节码内容,如下:

Classfile /E:/Java_IDEA/demo/src/main/java/com/example/demo/thread/SyncBlockAndMethod.class
  Last modified 2019年7月20日; size 637 bytes
  MD5 checksum 7600723349daa088a5353acd84c80fa5
  Compiled from "SyncBlockAndMethod.java"
public class com.example.demo.thread.SyncBlockAndMethod
  minor version: 0
  major version: 55
  flags: (0x0021) ACC_PUBLIC, ACC_SUPER
  this_class: #6                          // com/example/demo/thread/SyncBlockAndMethod
  super_class: #7                         // java/lang/Object
  interfaces: 0, fields: 0, methods: 3, attributes: 1
Constant pool:
   #1 = Methodref          #7.#18         // java/lang/Object."<init>":()V
   #2 = Fieldref           #19.#20        // java/lang/System.out:Ljava/io/PrintStream;
   #3 = String             #21            // Hello syncsTask
   #4 = Methodref          #22.#23        // java/io/PrintStream.println:(Ljava/lang/String;)V
   #5 = String             #24            // Hello syncTask
   #6 = Class              #25            // com/example/demo/thread/SyncBlockAndMethod
   #7 = Class              #26            // java/lang/Object
   #8 = Utf8               <init>
   #9 = Utf8               ()V
  #10 = Utf8               Code
  #11 = Utf8               LineNumberTable
  #12 = Utf8               syncsTask
  #13 = Utf8               StackMapTable
  #14 = Class              #27            // java/lang/Throwable
  #15 = Utf8               syncTask
  #16 = Utf8               SourceFile
  #17 = Utf8               SyncBlockAndMethod.java
  #18 = NameAndType        #8:#9          // "<init>":()V
  #19 = Class              #28            // java/lang/System
  #20 = NameAndType        #29:#30        // out:Ljava/io/PrintStream;
  #21 = Utf8               Hello syncsTask
  #22 = Class              #31            // java/io/PrintStream
  #23 = NameAndType        #32:#33        // println:(Ljava/lang/String;)V
  #24 = Utf8               Hello syncTask
  #25 = Utf8               com/example/demo/thread/SyncBlockAndMethod
  #26 = Utf8               java/lang/Object
  #27 = Utf8               java/lang/Throwable
  #28 = Utf8               java/lang/System
  #29 = Utf8               out
  #30 = Utf8               Ljava/io/PrintStream;
  #31 = Utf8               java/io/PrintStream
  #32 = Utf8               println
  #33 = Utf8               (Ljava/lang/String;)V
{
  public com.example.demo.thread.SyncBlockAndMethod();
    descriptor: ()V
    flags: (0x0001) ACC_PUBLIC
    Code:
      stack=1, locals=1, args_size=1
         0: aload_0
         1: invokespecial #1                  // Method java/lang/Object."<init>":()V
         4: return
      LineNumberTable:
        line 7: 0

  public void syncsTask();
    descriptor: ()V
    flags: (0x0001) ACC_PUBLIC
    Code:
      stack=2, locals=3, args_size=1
         0: aload_0
         1: dup
         2: astore_1
         3: monitorenter                      // 指向同步代码块的开始位置
         4: getstatic     #2                  // Field java/lang/System.out:Ljava/io/PrintStream;
         7: ldc           #3                  // String Hello syncsTask
         9: invokevirtual #4                  // Method java/io/PrintStream.println:(Ljava/lang/String;)V
        12: aload_1
        13: monitorexit                       // 指向同步代码块的结束位置,monitorenter和monitorexit之间就是同步代码块
        14: goto          22
        17: astore_2
        18: aload_1
        19: monitorexit                       // 若代码发生异常时就会执行这句指令释放锁
        20: aload_2
        21: athrow
        22: return
      Exception table:
         from    to  target type
             4    14    17   any
            17    20    17   any
      LineNumberTable:
        line 10: 0
        line 11: 4
        line 12: 12
        line 13: 22
      StackMapTable: number_of_entries = 2
        frame_type = 255 /* full_frame */
          offset_delta = 17
          locals = [ class com/example/demo/thread/SyncBlockAndMethod, class java/lang/Object ]
          stack = [ class java/lang/Throwable ]
        frame_type = 250 /* chop */
          offset_delta = 4

  public synchronized void syncTask();
    descriptor: ()V
    flags: (0x0021) ACC_PUBLIC, ACC_SYNCHRONIZED  // 用于标识是一个同步方法,不需要像同步块那样需要通过显式的字节码指令去标识哪里需要获取锁,哪里需要释放锁。同步方法无论是正常执行还是发生异常都会释放锁
    Code:
      stack=2, locals=1, args_size=1
         0: getstatic     #2                  // Field java/lang/System.out:Ljava/io/PrintStream;
         3: ldc           #5                  // String Hello syncTask
         5: invokevirtual #4                  // Method java/io/PrintStream.println:(Ljava/lang/String;)V
         8: return
      LineNumberTable:
        line 16: 0
        line 17: 8
}
SourceFile: "SyncBlockAndMethod.java"

什么是重入:

从互斥锁的设计上来说,当一个线程试图操作一个由其他线程持有的对象锁的临界资源时,将会处于阻塞状态,但当一个线程再次请求自己持有对象锁的临界资源时,这种情况属于重入

为什么会对synchronized嗤之以鼻:

锁优化之自旋锁:

许多情况下,共享数据的锁定状态持续时间较短,切换线程不值得。于是自旋锁应运而生,所谓自旋就是通过让线程执行忙循环等待锁的释放,从而不让出CPU时间片,例如while某个标识变量

缺点:若锁被其他线程长时间占用,将会带来许多性能上的开销,所以一般超过指定的自旋次数就会将线程挂起处于阻塞状态

锁优化之自适应自旋锁:

自适应自旋锁与普通自旋锁不同的就是可以自适应自旋次数,即自旋次数不再固定。而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定

锁优化之锁消除,锁消除是JVM另一种锁优化,这种优化更彻底:

在JIT编译时,对运行上下文进行扫描,去除不可能存在资源竞争的锁。这种方式可以消除不必要的锁,可以减少毫无意义的请求锁时间

关于锁消除,我们可以看一个例子,代码如下:

public class StringBufferWithoutSync {

    public void add(String str1, String str2) {
        //StringBuffer是线程安全,由于sb只会在append方法中使用,不可能被其他线程引用
        //因此sb属于不可能共享的资源,JVM会自动消除内部的锁
        StringBuffer sb = new StringBuffer();
        sb.append(str1).append(str2);
    }

    public static void main(String[] args) {
        StringBufferWithoutSync withoutSync = new StringBufferWithoutSync();
        for (int i = 0; i < 1000; i++) {
            withoutSync.add("aaa", "bbb");
        }
    }
}

锁优化之锁粗化,我们再来了解锁粗化的概念,有些情况下可能会需要频繁且重复进行加锁和解锁操作,例如同步代码写在循环语句里,此时JVM会有锁粗化的机制,即通过扩大加锁的范围,以避免反复加锁和解锁操作。代码示例:

public class CoarseSync {

    public static String copyString100Times(String target){
        int i = 0;
        // JVM会将锁粗化到外部,使得重复的加解锁操作只需要进行一次
        StringBuffer sb = new StringBuffer();
        while (i < 100){
            sb.append(target);
        }

        return sb.toString();
    }
}

synchronized锁存在四种状态:

偏向锁:

大多数情况下,锁不存在多线程竞争,总是由同一线程多次获得,为了减少同一线程获取锁的代价,就会使用偏向锁

核心思想:
如果一个线程获得了锁,那么锁就进入偏向模式,此时Mark Word的结构也变为偏向锁结构,当该线程再次请求锁时,无需再做任何同步操作,即获取锁的过程只需要检查Mark Word的锁标记位为偏向锁以及当前线程id等于Mark Word的ThreadID即可,这样就省去了大量有关锁申请的操作,那么这个锁也就偏向于该线程了

偏向锁不适用于锁竞争比较激烈的多线程场合

轻量级锁:

轻量级锁是由偏向锁升级而来,偏向锁运行在一个线程进入同步块的情况下,当有第二个线程加入锁竞争时,偏向锁就会升级为轻量级锁

适用场景:线程交替执行同步块

若存在线程同一时间访问同一锁的情况,就会导致轻量级锁膨胀为重量级锁

轻量级锁的加锁过程:

  1. 在代码进入同步块的时候,如果同步对象锁状态为无锁状态(锁标志位为“01”状态),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(LockRecord)的空间,用于存储锁对象目前的Mark Word的拷贝,官方称之为Displaced Mark Word。这时候线程堆栈与对象头的状态如下图所示:
    Java多线程与并发笔记

  2. 拷贝对象头中的Mark Word复制到锁记录中
  3. 拷贝成功后,虚拟机将使用CAS操作尝试将对象的Mark Word更新为指向Lock Record的指针,并将Lock record里的owner指针指向object mark word。如果更新成功,则执行步骤4,否则执行步骤5
  4. 如果这个更新动作成功了,那么这个线程就拥有了该对象的锁,并且对象Mark Word的锁标志位设置为“00",即表示此对象处于轻量级锁定状态,这时候线程堆栈与对象头的状态如下图所示:
    Java多线程与并发笔记

  5. 如果这个更新操作失败了,虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果是就说明当前线程已经拥有了这个对象的锁,那就可以直接进入同步块继续执行。否则说明多个线程竞争锁,轻量级锁就要膨胀为重量级锁,锁标志的状态值变为“10",Mark Word中存储的就是指向重量级锁(互斥量)的指针,后面等待锁的线程也要进入阻塞状态。而当前线程便尝试使用自旋来获取锁,自旋咱们前面讲过,就是为了不让线程阻塞,而采用循环去获取锁的过程

轻量级锁的解锁过程:

  1. 通过CAS操作尝试把线程中复制的Displaced Mark Word对象替换当前的Mark Word
  2. 如果替换成功,整个同步过程就完成了
  3. 如果替换失败,说明有其他线程尝试过获取该锁(此时锁己膨胀),那就要在释放锁的同时,唤醒被挂起的线程

锁的内存语义:

当线程释放锁时,Java内存模型会把该线程对应的本地内存中的共享变量刷新到主内存中;而当线程获取锁时,Java内存模型会把该线程对应的本地内存置为无效,从而使得被监视器保护的临界区代码必须从主内存中读取共享变量
Java多线程与并发笔记

偏向锁、轻量级锁、重量级锁的汇总:
Java多线程与并发笔记


synchronized和ReentrantLock的区别

在JDK1.5之前,synchronized是Java唯一的同步手段,而在1.5之后则有了ReentrantLock类(重入锁):

ReentrantLock公平性的设置:

ReentrantLock的好处在于将锁对象化了,因此可以实现synchronized难以实现的逻辑,例如:

如果说ReentrantLock将synchronized转变为了可控的对象,那么是否能将wait、notify及notifyall等方法对象化,答案是有的,即Condition:

synchronized和ReentrantLock的区别:


jmm的内存可见性

Java内存模型(JMM):

Java内存模型(Java Memory Model,简称JMM)本身是一种抽象的概念,并不真实存在,它描述的是一组规则或规范,通过这组规范定义了程序中各个变量(包括实例字段,静态字段和构成数组对象的元素)的访问方式

Java多线程与并发笔记

JMM中的主内存(即堆空间):

JMM中的工作内存(即本地内存,或线程栈):

JMM与Java内存区域划分(即Java内存结构)是不同的概念层次:

主内存与工作内存的数据存储类型以及操作方式归纳:

JMM如何解决可见性问题:
Java多线程与并发笔记

指令重排序需要满足的条件:

什么是Java内存模型中的happens-before:

happens-before的八大原则:

  1. 程序次序规则:一个线程内,按照代码顺序,书写在前面的操作先行发生于书写在后面的操作
  2. 锁定规则:一个unLock操作先行发生于后面对同一个锁的lock操作
  3. volatile变量规则:对一个变量的写操作先行发生于后面对这个变量的读操作(保证了可见性)
  4. 传递规则:如果操作A先行发生于操作B,而操作B又先行发生于操作C,则可以得出操作A先行发生于操作C
  5. 线程启动规则:Thread对象的start()方法先行发生于此线程的每一个动作
  6. 线程中断规则:对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生
  7. 线程终结规则:线程中所有的操作都先行发生于线程的终止检测,我们可以通过Thread.join()方法结束、Thread.isAlive()的返回值手段检测到线程已经终止执行
  8. 对象终结规则:一个对象的初始化完成先行发生于他的finalize()方法的开始

volatile:

volatile变量为何立即可见?简单来说:

volatile变量如何禁止重排序优化:

volatile和synchronized的区别:

  1. volatile本质是在告诉JVM当前变量在寄存器(工作内存)中的值是不确定的,需要从主存中读取;synchronized则是锁定当前变量,只有当前线程可以访问该变量,其他线程被阻塞住直到该线程完成变量操作为止
  2. volatile仅能使用在变量级别;synchronized则可以使用在变量、方法和类级别
  3. volatile仅能实现变量的修改可见性,不能保证原子性;而synchronized则可以保证变量修改的可见性和原子性
  4. volatile不会造成线程的阻塞;synchronized可能会造成线程的阻塞
  5. volatile标记的变量不会被编译器优化;synchronized标记的变量可以被编译器优化

CAS

CAS(Compare and Swap)是一种线程安全性的方法:

CAS思想:

CAS多数情况下对开发者来说是透明的:

缺点:


Java线程池

利用Executors创建不同的线程池满足不同场景的需求:

  1. newFixedThreadPool(int nThreads):指定工作线程数量的线程池
  2. newCachedThreadPool():处理大量短时间工作任务的线程池,特点:
  3. 试图缓存线程并重用,当无缓存线程可用时,就会创建新的工作线程
  4. 如果线程闲置的时间超过阈值,则会被终止并移出缓存
  5. 系统长时间闲置的时候,不会消耗什么资源
  6. newSingleThreadExecutor():创建唯一的工作者线程来执行任务,如果线程异常结束,会有另一个线程取代它
  7. newSingleThreadScheduledExecutor()与newScheduledThreadPool(int corePoolSize):定时或者周期性的工作调度,两者的区别在于单一工作线程还是多个线程
  8. JDK8新增的newWorkStealingPool():内部会构建ForkJoinPool ,利用working-stealing算法,并行地处理任务,不保证处理顺序
    • working-stealing算法:某个线程从其他线程的任务队列里窃取任务来执行

Fork/Join框架(JDK7提供):

Java多线程与并发笔记

为什么要使用线程池:

  1. 减低资源消耗,避免频繁地创建和销毁线程
  2. 提高线程的可管理性,例如可控的线程数量,线程状态的监控和统一创建/销毁线程

Executor的框架:
Java多线程与并发笔记

J.U.C的三个Executor接口:

线程池执行任务流程图:
Java多线程与并发笔记

ThreadPoolExecutor的七个构造器参数:

新任务提交execute执行后的判断:

execute执行流程图:
Java多线程与并发笔记

线程池的状态:

线程池状态转换图:
Java多线程与并发笔记

线程池中工作线程的生命周期:
Java多线程与并发笔记

关于线程池大小如何选定参考:

推荐阅读:
  1. JAVA多线程限流解决并发问题
  2. 浅谈NSOperation的并发与非并发

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

多线程 并发

上一篇:Spring 里那么多种 CORS 的配置方式,到底有什么区别

下一篇:c# 模拟提交带文件上传的表单

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》