在Ubuntu中,有多种进程间通信(IPC)机制可供选择。以下是一些常用的IPC方法:
管道是一种半双工的通信方式,数据只能单向流动,且只能在具有亲缘关系的进程之间使用。
匿名管道通常用于父子进程之间的通信。
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main() {
int pipefd[2];
pid_t pid;
char buffer[256];
if (pipe(pipefd) == -1) {
perror("pipe");
exit(EXIT_FAILURE);
}
pid = fork();
if (pid == -1) {
perror("fork");
exit(EXIT_FAILURE);
}
if (pid == 0) { // 子进程
close(pipefd[1]); // 关闭写端
read(pipefd[0], buffer, sizeof(buffer));
printf("Child received: %s\n", buffer);
close(pipefd[0]);
} else { // 父进程
close(pipefd[0]); // 关闭读端
write(pipefd[1], "Hello from parent", 20);
close(pipefd[1]);
}
return 0;
}
命名管道是一种特殊的文件,可以在不相关的进程之间进行通信。
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
int main() {
int fd;
char buffer[256];
mkfifo("myfifo", 0666);
fd = open("myfifo", O_RDWR);
if (fd == -1) {
perror("open");
exit(EXIT_FAILURE);
}
write(fd, "Hello from FIFO", 20);
read(fd, buffer, sizeof(buffer));
printf("Received: %s\n", buffer);
close(fd);
unlink("myfifo");
return 0;
}
消息队列允许进程发送和接收消息,消息队列是系统范围内的资源。
#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/msg.h>
struct msg_buffer {
long msg_type;
char msg_text[100];
};
int main() {
int msgid;
key_t key = 1234;
struct msg_buffer message;
msgid = msgget(key, IPC_CREAT | 0666);
if (msgid == -1) {
perror("msgget");
exit(EXIT_FAILURE);
}
message.msg_type = 1;
strcpy(message.msg_text, "Hello from message queue");
msgsnd(msgid, &message, sizeof(message.msg_text), 0);
printf("Message sent\n");
msgrcv(msgid, &message, sizeof(message.msg_text), 1, 0);
printf("Message received: %s\n", message.msg_text);
msgctl(msgid, IPC_RMID, NULL);
return 0;
}
共享内存是最快的IPC机制之一,因为它避免了内核空间的拷贝。
#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <unistd.h>
int main() {
int shmid;
key_t key = 1234;
char *shmaddr;
int *counter;
shmid = shmget(key, sizeof(int), IPC_CREAT | 0666);
if (shmid == -1) {
perror("shmget");
exit(EXIT_FAILURE);
}
shmaddr = shmat(shmid, NULL, 0);
if (shmaddr == (char *) -1) {
perror("shmat");
exit(EXIT_FAILURE);
}
*counter = 0;
printf("Counter initialized to %d\n", *counter);
while (1) {
(*counter)++;
printf("Counter: %d\n", *counter);
sleep(1);
}
shmdt(shmaddr);
shmctl(shmid, IPC_RMID, NULL);
return 0;
}
信号是一种异步通知机制,用于进程间通信。
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>
void signal_handler(int signum) {
printf("Received signal %d\n", signum);
}
int main() {
signal(SIGINT, signal_handler);
printf("Waiting for signal...\n");
while (1) {
sleep(1);
}
return 0;
}
套接字是一种通用的IPC机制,不仅可以在本地进程间通信,还可以用于网络通信。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
int main() {
int server_fd, new_socket;
struct sockaddr_in address;
int opt = 1;
int addrlen = sizeof(address);
char buffer[1024] = {0};
if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0) {
perror("socket failed");
exit(EXIT_FAILURE);
}
if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt))) {
perror("setsockopt");
exit(EXIT_FAILURE);
}
address.sin_family = AF_INET;
address.sin_addr.s_addr = INADDR_ANY;
address.sin_port = htons(8080);
if (bind(server_fd, (struct sockaddr *)&address, sizeof(address)) < 0) {
perror("bind failed");
exit(EXIT_FAILURE);
}
if (listen(server_fd, 3) < 0) {
perror("listen");
exit(EXIT_FAILURE);
}
if ((new_socket = accept(server_fd, (struct sockaddr *)&address, (socklen_t*)&addrlen)) < 0) {
perror("accept");
exit(EXIT_FAILURE);
}
read(new_socket, buffer, 1024);
printf("Message received: %s\n", buffer);
close(new_socket);
close(server_fd);
return 0;
}
这些是Ubuntu中常用的进程间通信机制。根据具体需求选择合适的IPC方法。