C++ 二叉搜索树原理及其实现

发布时间:2020-08-05 12:30:51 作者:sonissa
来源:网络 阅读:252

首先是概念:
二叉搜索树又称二叉排序树,它具有以下的性质:

再下来是它的实现

首先是构造节点:

template<class K>
struct BStreeNode{
    BStreeNode(const K& date = K())    //节点的定义
    :leftC(nullptr),    // 初始化
    rightC(nullptr),
    date_(date)
    {}
    BStreeNode<K> *leftC;      //左孩子
    BStreeNode<K> *rightC;    //右孩子
    K date_;
};

二叉搜索树类的实现:

template<class K>
class BStree{
    typedef BStreeNode<K> BsNode;
public:
    BStree() :
        _root(nullptr)    
    {}
    BsNode* Find(const K& date){       //查找节点
        BsNode* pNode = _root;
        while (pNode){
            if (pNode->date_ == date){
                return pNode;
            }
            else if (pNode->date_ > date){
                pNode = pNode->rightC;
            }
            else
                pNode = pNode->leftC;
        }
        return nullptr;
    }
    bool Insert(const K& date){
        BsNode *pNode = _root;
        BsNode *parent=nullptr;
        if (_root == nullptr){      //空树时开辟空间定义为根节点
            _root = new BsNode(date);
            return true;
        }
        else if (Find(date)){   //存在相同结点不进行插入
            return false;
        }
        else{
            while (pNode){         //找到插入位置,但是这里循环结束后只确认了父母结点,是做左孩子还是右孩子不确认( 因为此时值为nullptr )
                parent = pNode;
                if (pNode->date_ > date){
                    pNode = pNode->leftC;
                }
                else{
                    pNode = pNode->rightC;
                }
            }
            pNode = new BsNode(date);    //构造结点
            if (parent->date_ > date){       //确认是做左孩子还是右孩子
                parent->leftC = pNode;
            }
            else{
                parent->rightC = pNode;
            }
            return true;
        }
    }

    bool Delete(const K& date){
        BsNode *pNode = _root;
        BsNode *parent = nullptr;
        if (pNode == nullptr){    //空树情况
            return false;
        }
        while (pNode){      //找到要删除的结点
            if (pNode->date_ == date){
                break;
            }
            else if (pNode->date_ < date){
                parent = pNode;
                pNode = pNode->rightC;
            }
            else{
                parent = pNode;
                pNode = pNode->leftC;
            }
        }
        //BsNode *pdel=pNode;
        if (pNode == parent){      //要删除的点是根节点
            if (pNode->leftC){
                pNode = pNode->leftC;
            }
            else if (pNode->rightC){
                pNode = pNode->rightC;
            }
            else{
                pNode = nullptr;
            }
        }
        if (pNode == nullptr){   // 没有找到要删除的节点
            return false;
        }
        if (pNode->rightC && pNode->leftC == nullptr){  //结点只有右子树
            if (pNode == parent->leftC){
                parent->leftC = pNode->rightC;
            }
            else{
                parent->rightC = pNode->rightC;
            }
        }
        else if (pNode->leftC && pNode->rightC == nullptr){   //结点只有左子树
            if (pNode == parent->leftC){
                parent->leftC = pNode->leftC;
            }
            else{
                parent->rightC = pNode->leftC;
            }
        }
        else if (pNode->leftC && pNode->rightC){    //儿女俱全
            if (pNode == parent->leftC){   //要删除的节点是父母节点的左孩子,删除后的位置要由原先节点的右孩子替代
                pNode->rightC->leftC = pNode->leftC;
                parent->leftC = pNode->rightC;
            }
            else{
                pNode->leftC->rightC= pNode->rightC;  //要删除的节点是父母节点的右孩子,删除后的位置要由原先节点的左孩子替代
                parent->rightC = pNode->leftC;
            }
        }
        else{                                        //无子可依
            if (pNode == parent->leftC){
                parent->leftC = nullptr;
            }
            else{
                parent->rightC = nullptr;
            }
        }
        delete pNode;     //在连接完成后最后再进行删除
        return true;
    }

    BsNode* IfLeftMost(){
        if (_root == nullptr){
            return nullptr;
        }
        BsNode *pNode = _root;
        while (pNode->leftC){
            pNode = pNode->leftC;
        }
        return pNode;
    }
    BsNode* IfRightMost(){
        if (_root == nullptr){
            return nullptr;
        }
        BsNode *pNode = _root;
        while (pNode->rightC){
            pNode = pNode->rightC;
        }
        return pNode;
    }
    void InOrder(){  //定义一个借口给外部调用,因为根节点在这里是private权限
        InOrder(_root);
        cout << endl;
    }

private:
    void InOrder(BsNode *pNode){    //二叉树的中序遍历,用来检查结果(二叉搜索树中序遍历应该是一个有序序列)
        if (pNode){
            InOrder(pNode->leftC);
            cout << pNode->date_ << ' ';
            InOrder(pNode->rightC);
        }
    }
private:
    BsNode *_root;
};

测试函数这里就不提供了

推荐阅读:
  1. C++实现二叉搜索树的代码怎么写
  2. C++如何实现验证二叉搜索树

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

c++ 二叉搜索树 中序遍历

上一篇:Redis持久化方式RDB与AOF详解

下一篇:v-once v-pre v-cloak作用

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》