python 普通克里金(Kriging)法的实现

发布时间:2020-08-24 06:21:38 作者:山人青冥
来源:脚本之家 阅读:538

克里金法时一种用于空间插值的地学统计方法。

克里金法用半变异测定空间要素,要素即自相关要素。

半变异公式为:

python 普通克里金(Kriging)法的实现

其中γ(h) 是已知点 xixj 的半变异,***h***表示这两个点之间的距离,z是属性值。

假设不存在漂移,普通克里金法重点考虑空间相关因素,并用拟合的半变异直接进行插值。

估算某测量点z值的通用方程为:

python 普通克里金(Kriging)法的实现

式中,z0是待估计值,zx是已知点x的值,Wx是每个已知点关联的权重,s是用于估计的已知点数目。
权重可以由一组矩阵方程得到。

python 普通克里金(Kriging)法的实现

python 普通克里金(Kriging)法的实现

此程序对半变异进行拟合时采用的时最简单的正比例函数拟合

数据为csv格式

保存格式如下:

第一行为第一个点以此类推

最后一行是待求点坐标,其中z为未知值,暂且假设为0

python 普通克里金(Kriging)法的实现

代码如下:

import numpy as np
from math import*
from numpy.linalg import *
h_data=np.loadtxt(open('高程点数据.csv'),delimiter=",",skiprows=0)
print('原始数据如下(x,y,z):\n未知点高程初值设为0\n',h_data)
def dis(p1,p2):
 a=pow((pow((p1[0]-p2[0]),2)+pow((p1[1]-p2[1]),2)),0.5)
 return a
def rh(z1,z2):
 r=1/2*pow((z1[2]-z2[2]),2)
 return r
def proportional(x,y):
 xx,xy=0,0
 for i in range(len(x)):
  xx+=pow(x[i],2)
  xy+=x[i]*y[i]
 k=xy/xx
 return k
r=[];pp=[];p=[];
for i in range(len(h_data)):
 pp.append(h_data[i])
for i in range(len(pp)):
 for j in range(len(pp)):
  p.append(dis(pp[i],pp[j]))
  r.append(rh(pp[i],pp[j]))
r=np.array(r).reshape(len(h_data),len(h_data))
r=np.delete(r,len(h_data)-1,axis =0)
r=np.delete(r,len(h_data)-1,axis =1)

h=np.array(p).reshape(len(h_data),len(h_data))
h=np.delete(h,len(h_data)-1,axis =0)
oh=h[:,len(h_data)-1]
h=np.delete(h,len(h_data)-1,axis =1)

hh=np.triu(h,0)
rr=np.triu(r,0)
r0=[];h0=[];
for i in range(len(h_data)-1):
 for j in range(len(h_data)-1):
  if hh[i][j] !=0:
   a=h[i][j]
   h0.append(a)
  if rr[i][j] !=0:
   a=rr[i][j]
   r0.append(a)
k=proportional(h0,r0)
hnew=h*k
a2=np.ones((1,len(h_data)-1))
a1=np.ones((len(h_data)-1,1))
a1=np.r_[a1,[[0]]]
hnew=np.r_[hnew,a2]
hnew=np.c_[hnew,a1]
print('半方差联立矩阵:\n',hnew)
oh=np.array(k*oh)
oh=np.r_[oh,[1]]
w=np.dot(inv(hnew),oh)
print('权阵运算结果:\n',w)
z0,s2=0,0
for i in range(len(h_data)-1):
 z0=w[i]*h_data[i][2]+z0
 s2=w[i]*oh[i]+s2
s2=s2+w[len(h_data)-1]
print('未知点高程值为:\n',z0)
print('半变异值为:\n',pow(s2,0.5))
input()

运算结果

python 普通克里金(Kriging)法的实现

python初学,为了完成作业写了个小程序来帮助计算,因为初学知识有限,有很多地方写的很复杂,可以优化的地方很多。 还望读者谅解,欢迎斧正谢谢!

参考文献:
【1】(美)张康聪 著;陈健飞等译. 地理信息系统导论(第三版). 北京:清华大学出版社, 2009.04.

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持亿速云。

推荐阅读:
  1. 教你用Python制作表情包,实现换脸技术!
  2. 使用Python实现牛顿法求极值

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

python 克里金法 ig

上一篇:Jabber 创建一个application dial rule

下一篇:Spring Boot + Jpa(Hibernate) 架构基本配置详解

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》