Numpy如何实现矩阵运算及线性代数应用

发布时间:2021-03-22 13:46:51 作者:小新
来源:亿速云 阅读:283

这篇文章主要介绍了Numpy如何实现矩阵运算及线性代数应用,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

一、创建矩阵的方法

import numpy as np
# 1直接创建
mat=np.mat("1 2 3;4 5 6;7 8 9")
print(mat)
# 2使用numpy数组创建矩阵
mat2=np.mat(np.arange(1,10).reshape(3,3))
print(mat2)
# 3从已有的矩阵中通过bmat函数创建
A=np.eye(2)
B=A*2
mat3=np.bmat("A B;B A")
print(mat3) #类似于拼接

二、矩阵运算

 2.1随机函数表

Numpy如何实现矩阵运算及线性代数应用

随机函数1

Numpy如何实现矩阵运算及线性代数应用 

随机函数2*

2.2部分实例

mat1=np.mat(np.array([2,6,5]))
mat2=np.mat(np.array([2,6,5]))

2.2.1加法—np.add

addresult=np.add(mat1,mat2)
print(addresult)

2.2.2乘法—multiply

multiresult=np.multiply(mat1,mat2)
print(multiresult) #数值的乘法
mat3=np.mat(np.arange(6).reshape(2,3))
mat4=np.mat(np.arange(6).reshape(3,2))
print("mat3*mat4\n",mat3*mat4)

2.2.3除法—divide

a=np.mat(np.array([4,5,8]))
b=np.mat(np.array([2,3,5]))
#########################除法
result1=np.divide(a,b)
print(result1)

#数组除法将结果向下去整
result2=np.floor_divide(a,b)
print("除法向下去整:",result2)
#矩阵直接相除
print("矩阵直接相除",a/b)
#矩阵取模
print("矩阵取模",a%b)

#返回小数部分
floatResult=np.true_divide(a,b)
print(floatResult)

mat**2,要求mat为方阵,其平方为mat*mat的结果
mat1*mat2的结果为mat1(m,n)的行与mat2(n,p)的列乘积组成的新的矩阵(m,p)

2.2.4取模-mod/fmod

import numpy as np
mat1=np.mat(np.array([5,-7,9]))
mat2=np.mat(np.array([2,-4,3]))
#取模运算
result1=np.remainder(mat1,mat2)
print("remainder:",result1)

result2=np.mod(mat1,mat2)
print("mod",result2)

result3=mat1%mat2
print("%",result3)

result4=np.fmod(mat1,mat2)
print(result4) #模 的正负和被除数相同,与除数无关

三、通用函数

1一元函数(ufunc),只接受一个数组,结果返回一个结果数组,
当然也有返回两个数组的(modf),但是情况很少。
2二元函数(binary),接受的是两个结果,返回的是一个结果数组

3.1 一元通用函数

3.1.1 图表总说明

Numpy如何实现矩阵运算及线性代数应用 

红线圈出为常用函数

import numpy as np
mat=np.mat(np.array([-10,5,-4,3,0,12]))
print(np.abs(mat)) #绝对值
print(np.fabs(mat)) #非复数情况下

3.1.2获取矩阵中各元素的正负—sign

#获取矩阵中各元素的正负号
sign=np.sign(mat)
print("sign:",sign)
#sign: [[-1 1 -1 1 0 1]]

3.1.3整数小数的抽取分离—modf

#将数组中元素的小数和整数部分抽取出来
arr=np.array([[1.2,3.34],
    [-2.5,6.8]])
arr1,arr2=np.modf(arr)
print("整数部分:",arr2)
print("小数部分:",arr1)

3.2二元通用函数

3.2.1图表总说明

Numpy如何实现矩阵运算及线性代数应用 

红线圈出为常用函数

3.2.2对应的矩阵的幂函数运算—power

mat2=np.mat(np.array([1,2,3,4]))
mat3=np.mat(np.array([2,3,2,3]))
result1=np.power(mat2,mat3) #mat2中元素作为底,mat3作为幂
print(result1)

3.2.3获取两个数组中对应元素的最大/小值,存放到新的数组中power()

import numpy as np
mat3=np.mat(np.array([[1,2.2],[2,1.2]]))
mat4=np.mat(np.array([[5,2.6],[2,3.2]]))
result=np.power(mat1,mat2)
print(result) >> [[ 1.   20.57737365] [ 6.76  1.79217324]]

maximun=np.maximum(mat3,mat4)
print(maximun) >> [[5. 2.6] [2. 3.2]]

3.2.4数组比较—greater

result2=np.greater(mat3,mat4)
print(result2) >> [[False True] [ True False]]
# 亦或 xor:相同的为False,不同的为True

3.2.5创建同结构的数组—np.zeros_like()

import numpy as np
a=np.arange(4).reshape(2,2)
print(a)
#创建一个和a类型一样,但数据全是0的数组
like_a=np.zeros_like(a)
like_a=3 #赋值
print(like_a)
#################################################################################
#创建一个通用函数numpy
def like(ndarry):
 result=np.zeros_like(ndarry)
 result.flat=5
 return result
#调用numpy创建通用函数的方法,1个输入,一个输出
myfunc=np.frompyfunc(like,1,1)
test=myfunc(np.arange(9).reshape(3,3))
print(test)
#结果如下:
#[[array(5) array(5) array(5)]
# [array(5) array(5) array(5)]
# [array(5) array(5) array(5)]]

四、矩阵运算-add运算

4.1矩阵元素求和—reduce

print("reduce:",np.add.reduce(a))
print("sum:",np.sum(a))

4.2矩阵元素求和列出—accumulate

print("accumulate",np.add.accumulate(a))

4.3reduceat函数

print("reduceat",np.add.reduceat(a,[1,3,2,4])) # >> reduceat [3 3 5 4]
 #第一步用到索引值列表中的1和3,对数组中索引值在1到3之间的元素进行reduce操作 得到3; 
 #第二步用到索引值3和2。由于2比3小,所以直接返回索引值为3的元素 得到3;
 #第三步用到索引值2和4。对索引值在2到4之间的数组元素进行reduce操作 得到4;
 #第四步用到索引值4。对索引值从7开始直到数组末端的元素进行reduce操作 得到5;

4.4各个矩阵元素相加—outer

arr1=np.array([1,6])
arr2=np.array([2,3,5,65])
result2=np.add.outer(arr1,arr2) #相加
result3=np.outer(arr1,arr2)  #相乘
print("outer:",result2)
 # outer 将第一个数组中的每个元素分别和第二个数组的所有元素相加

五、线性代数的应用

 5.1 逆矩阵—np.linalg.inv()

import numpy as np
A=np.mat(np.array([[0,1,2],[1,0,3],[4,-3,8]]))
#求A 的逆矩阵
A_=np.linalg.inv(A)
print("A的逆矩阵:\n",A_)

#验证A*A_是否是单位矩阵
print("A*A_:\n",A*A_)

5.2计算矩阵—np.linalg.solve(arr1,arr2)

import numpy as np

'''
X-2Y+Z=0
2Y-8Z=8
-4X+5Y+9Z=-9
'''
#求解三元一次函数
A=np.mat("1 -2 1;0 2 -8;-4 5 9")
print("系数:",A)
B=np.array([0,8,-9])
print("常数:",B)

#调用numpy的solve方法
result=np.linalg.solve(A,B)
print("X={},Y={},Z={}".format(result[0],result[1],result[2]))

5.3 特征值和特征向量

import numpy as np
vector=np.mat("3 -2;1 0")
#求特征值
eigenvalues=np.linalg.eigvals(vector)
# 特征值是Ax=ax的根
eigenvalues,eigvector=np.linalg.eig(vector)
print("特征值:",eigenvalues)
print("特征向量:\n",eigvector)
>>结果:
特征值: [2. 1.]
特征向量:
 [[0.89442719 0.70710678]
 [0.4472136 0.70710678]]

5.4奇异值分解—np.linalg.svd()

import numpy as np
vector=np.mat("4 11 14;8 7 -2")
#调用numpy汇总的svd方法对矩阵进行奇异值分解
U,sigma,V=np.linalg.svd(vector,full_matrices=False)
print("U\n",U)
print("sigma:\n",sigma)
print("V:\n",V)

#将svd分解出的值相乘
print("vector:\n",U*np.diag(sigma)*V)

5.5矩阵行列式—np.linalg.det()

对于一个n×n的实数矩阵,行列式描述的是一个线性变换对“有向体积”所造成的影响。行列式的值为正表示保持了空间的定向(顺时针或逆时针),为负则表示颠倒了空间的定向。numpy.linalg模块中的det函数可以计算矩阵的行列式。

import numpy as np
vector=np.mat("3 4;5 6")
print(vector)
#求行列式
value=np.linalg.det(vector)
print("行列式:",value)

六、专用函数

6.1排序

6.1.1对数组元素进行排序

import numpy as np
arr=np.array([1,2,34,5])
result=np.sort(arr)
arr.sort()
print(arr)

6.1.2返回排序后数组元素的索引—argsort()

argsort=np.argsort(arr)
print("argsort:",argsort)
d2=np.array([[12,3,45,2],
    [43,552,1,9]])
#将多维数组按列排序
d2.sort(axis=0)
print(d2)
#[[ 12 3 1 2]
# [ 43 552 45 9]]
#将多维数组按行排序
d2.sort(axis=1)
print(d2)

6.1.3竖向索引排序

print(np.argsort(d2,axis=0))
[[0 0 0 0]
 [1 1 1 1]]

6.1.4横向索引排序

print(np.argsort(d2,axis=1))
[[2 3 1 0]
[3 0 2 1]]

6.2搜索函数

6.2.1基本函数

Numpy如何实现矩阵运算及线性代数应用

6.2.2获取最大值的下标—np.argmax()

import numpy as np
a=np.array([[2,3,653,4],
   [5,62,943,44,]])
b=np.array([32,13,65,43])
#如果是多维数组,则将多维数组展平后获取最大值的下标
argmax=np.argmax(a)
print(argmax)

6.2.3非零元素获取下标—np.argwhere()

#根据条件数组中搜索非零的元素,分析返回对应的下标
print("argwhere\n",np.argwhere(b>40))
print("argwhere 多维\n",np.argwhere(a>100))
'''
argwhere 多维
 [[0 2]
 [1 2]]
'''

6.2.4寻找合适的下标—np.searchsorted()

sorted=np.arange(5)
indices=np.searchsorted(sorted,[-2,7])
print(indices)      #下标

6.2.5添加符合的下标的元素,返回新的数组—np.searchsorted()

newsorted=np.insert(sorted,indices,[-2,7])
print("添加新元素后:\n",newsorted)

6.3抽取函数—extract(condition,ndarray)

一维

import numpy as np
a=np.arange(10)
#生成一个抽取元素的花式索引
condition=a%2==0#赋值/算术/逻辑运算符优先级
print("花式索引",condition)
even=np.extract(condition,a)
print("偶数项:",even)
#take()/compress()
even2=a.compress(condition)

多维强调内容

import numpy as np
#抽取数组中非零的元素np.nonzero() 的索引
arr=np.array([[0,1,2],[0,3,4],[0,5,6]])
rows,cols=np.nonzero(arr)
print("rows",rows)
print("cols:",cols)

indices=np.dstack((rows,cols))
print("indices:\n",indices)

6.4金融函数

6.4.1 计算存款/贷款(终值)—fv函数

Numpy如何实现矩阵运算及线性代数应用 

Numpy如何实现矩阵运算及线性代数应用

np.fv(rate,nper,pmt,pv,)
rate:存款/贷款每一期的利率
nper:总期数
pmt:存款/贷款支付的金额
pv:存款/贷款金额
rate=0.03/4
nper=5*4
pmt=-10
pv=-1000

import numpy as np
#某用户去银行存款,假设年利率是3%,,每季度存10元,
# 存5年以及存款1000,五年后可得到的本息和是多少?

#g该用户5年后得到的本息为
fv=np.fv(0.03/4,5*4,-10,-1000)
print("5年后本息和:",fv)
#计算每一年的本息和
for i in range(1,6):
 fv1=np.fv(0.03/4,i*4,-10,-1000)
 print("第",i,"年本息和为:{}".format(fv1))

6.4.2计算首月的金额(起始值)—pv函数

np.pv(rate, nper, pmt, pv, )
如果是贷款则是终值0
如果是贷款是本息和

import numpy as np
#存五年可得1376.0963320407982,计算5年前存款的金额
pv=np.pv(0.03/4,5*4,-10,1376.0963320407982)
print("5年钱第一次存款的金额是:",np.round(-pv))

6.4.3计算净现值—npv函数

np.npv(rate,value)
rate:折现率
values:现金流
NPV>0,则除了得到预定的收益率外,可能得到更高的收益;
NPV<0,则未达到利益水平,但是不能确定自己是否亏损;
NPV=0, 正好达到预期的收益效果 ,不是盈亏平衡

#投资100,支出39,59,55,20,折现率28.1%,净现值多大?
npv=np.npv(0.281,[-100,39,59,55,20])
print("净现值:",npv)

6.4.4计算每期还款金额—pmt函数

np.pmt(rate,nper,pv)
rate: 存款 / 贷款每一期的利率
nper:总期数
pv:需要还款的金额

#某人贷款20万,15年还清,年利率是7.5%,求每月还的金额?
pmt=np.pmt(0.075/12,15*12,200000)
print("每月还款的金额:{}".format(pmt))

6.4.5计算还款期数—nper函数

np.nper(rate,pmt,pv,fv)
rate:存款/贷款每一期的利率
pmt:存款/贷款支付的金额
pv:存款/贷款金额
fv:总金额

#某人贷款20万,每月还2000,年利率是7.5%,求多少年还完?
nper=np.nper(0.075/12,-2000,200000)
months=np.ceil(nper)
years=np.ceil(months/12)#向上取整
print("需要还款{}年".format(years)) >>14年

感谢你能够认真阅读完这篇文章,希望小编分享的“Numpy如何实现矩阵运算及线性代数应用”这篇文章对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,更多相关知识等着你来学习!

推荐阅读:
  1. MATLAB如何实现矩阵运算
  2. numpy_ndarray的矩阵运算

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

numpy

上一篇:如何解决go Fscanf在读取文件时出现的问题

下一篇:Golang Printf,Sprintf,Fprintf格式化的示例

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》