nginx中怎么实现一个事件模块

发布时间:2021-06-24 17:27:40 作者:Leah
来源:亿速云 阅读:154

nginx中怎么实现一个事件模块,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

1. ngx_events_block()----events配置块解析

        nginx在解析nginx.conf配置文件时,如果当前解析的配置项名称为events,并且是一个配置块,则会调用ngx_events_block()方法解析该配置块,如下是该方法的源码:

static char * ngx_events_block(ngx_conf_t *cf, ngx_command_t *cmd, void *conf) {
  char *rv;
  void ***ctx;
  ngx_uint_t i;
  ngx_conf_t pcf;
  ngx_event_module_t *m;

  // 如果存储事件模块配置数据的配置项不为空,说明已经解析过配置项了,因而直接返回
  if (*(void **) conf) {
    return "is duplicate";
  }

  // 这里主要是计算event模块的个数,并且将各个event模块的相对顺序标记在了该模块的ctx_index属性中
  ngx_event_max_module = ngx_count_modules(cf->cycle, NGX_EVENT_MODULE);

  // 创建一个存储配置项数组的指针
  ctx = ngx_pcalloc(cf->pool, sizeof(void *));
  if (ctx == NULL) {
    return NGX_CONF_ERROR;
  }

  // 为配置项指针申请数组内存
  *ctx = ngx_pcalloc(cf->pool, ngx_event_max_module * sizeof(void *));
  if (*ctx == NULL) {
    return NGX_CONF_ERROR;
  }

  // 将数组值赋值到conf中,也即关联到核心配置对象ngx_cycle_t中
  *(void **) conf = ctx;

  for (i = 0; cf->cycle->modules[i]; i++) {
    if (cf->cycle->modules[i]->type != NGX_EVENT_MODULE) {
      continue;
    }

    m = cf->cycle->modules[i]->ctx;

    // 如果当前模块的create_conf()方法不为空,则调用该方法创建存储配置项的结构体
    if (m->create_conf) {
      (*ctx)[cf->cycle->modules[i]->ctx_index] = m->create_conf(cf->cycle);
      if ((*ctx)[cf->cycle->modules[i]->ctx_index] == NULL) {
        return NGX_CONF_ERROR;
      }
    }
  }

  // 这里将*cf结构体进行了复制,临时存储在pcf中,然后初始化当前的*cf结构体的模块相关的参数,
  // 以进行下一步的解析
  pcf = *cf;
  cf->ctx = ctx;
  cf->module_type = NGX_EVENT_MODULE;
  cf->cmd_type = NGX_EVENT_CONF;

  // 解析events{}配置块中的子配置项
  rv = ngx_conf_parse(cf, NULL);

  // 重新将pcf复制给*cf,以供后面返回使用
  *cf = pcf;

  if (rv != NGX_CONF_OK) {
    return rv;
  }

  // 到这里,说明events{}配置块的配置项都解析完成了,因而这里调用各个模块的init_conf()方法,
  // 进行配置项的初始化和合并工作
  for (i = 0; cf->cycle->modules[i]; i++) {
    if (cf->cycle->modules[i]->type != NGX_EVENT_MODULE) {
      continue;
    }

    m = cf->cycle->modules[i]->ctx;

    // 如果当前模块的init_conf()不为空,则调用其init_conf()方法初始化配置项
    if (m->init_conf) {
      rv = m->init_conf(cf->cycle, (*ctx)[cf->cycle->modules[i]->ctx_index]);
      if (rv != NGX_CONF_OK) {
        return rv;
      }
    }
  }

  return NGX_CONF_OK;
}

        ngx_events_block()方法主要完成的工作有如下几个:

2. ngx_event_init_conf()----检查事件模块配置结构体是否正常创建

        在nginx解析完nginx.conf配置文件的所有配置项后(包括前一步中讲解的对events配置项的解析),其就会调用所有核心模块的init_conf()方法对核心模块的配置项进行初始化。这里的核心模块就包括ngx_events_module,该模块的init_conf()方法指向的就是这里的ngx_event_init_conf()方法,该方法本质上并没有做什么工作,只是检查了是否创建了存储事件模块配置项的结构体数组。如下是ngx_event_init_conf()方法的源码:

static char *ngx_event_init_conf(ngx_cycle_t *cycle, void *conf) {
  if (ngx_get_conf(cycle->conf_ctx, ngx_events_module) == NULL) {
    ngx_log_error(NGX_LOG_EMERG, cycle->log, 0,
                  "no \"events\" section in configuration");
    return NGX_CONF_ERROR;
  }

  return NGX_CONF_OK;
}

        上面两个方法就是ngx_events_module核心模块的两个主要的配置方法,可以看到,这个核心模块的主要作用就是创建了一个数组,用于存储各个事件模块的配置结构体的。下面我们来看一下事件核心模块的主要方法。

3. ngx_event_core_create_conf()----创建事件核心模块配置结构体

        在第1点中我们讲到,解析events配置块的子配置项之前,会调用各个事件模块的create_conf()方法来创建其使用的存储配置数据的结构体,而后调用ngx_conf_parse()方法来解析子配置项,接着调用各个事件模块的init_conf()方法初始化各个模块配置数据的结构体。这里ngx_event_core_module_ctx就是一个事件类型的模块,其create_conf属性指向的就是ngx_event_core_create_conf()方法,而init_conf属性指向的就是ngx_event_core_init_conf()方法。这一节我们首先讲解ngx_event_core_create_conf()方法的实现原理:

static void *ngx_event_core_create_conf(ngx_cycle_t *cycle) {
  ngx_event_conf_t *ecf;

  ecf = ngx_palloc(cycle->pool, sizeof(ngx_event_conf_t));
  if (ecf == NULL) {
    return NULL;
  }

  ecf->connections = NGX_CONF_UNSET_UINT;
  ecf->use = NGX_CONF_UNSET_UINT;
  ecf->multi_accept = NGX_CONF_UNSET;
  ecf->accept_mutex = NGX_CONF_UNSET;
  ecf->accept_mutex_delay = NGX_CONF_UNSET_MSEC;
  ecf->name = (void *) NGX_CONF_UNSET;

  return ecf;
}

        可以看到,这里的ngx_event_core_create_conf()方法本质上就是创建了一个ngx_event_conf_t结构体,并且将各个属性都设置为未设置状态。

4. ngx_event_core_init_conf()----初始化配置结构体

        前面我们讲到,在解析完各个子配置项之后,nginx会调用各个事件模块的init_conf()方法,这里的核心事件模块就是这个ngx_event_core_init_conf()方法,如下是该方法的源码:

static char * ngx_event_core_init_conf(ngx_cycle_t *cycle, void *conf) {
  ngx_event_conf_t *ecf = conf;

#if (NGX_HAVE_EPOLL) && !(NGX_TEST_BUILD_EPOLL)
  int                  fd;
#endif
  ngx_int_t i;
  ngx_module_t *module;
  ngx_event_module_t *event_module;

  module = NULL;

#if (NGX_HAVE_EPOLL) && !(NGX_TEST_BUILD_EPOLL)

  // 测试是否具有创建epoll句柄的权限
  fd = epoll_create(100);

  if (fd != -1) {
    // 关闭创建的epoll句柄,并且将module指向epoll模块
      (void) close(fd);
      module = &ngx_epoll_module;

  } else if (ngx_errno != NGX_ENOSYS) {
      module = &ngx_epoll_module;
  }
#endif

  // 这里,如果没有前面判断的模块类型,则默认使用事件模块中的第一个模块作为事件处理模型
  if (module == NULL) {
    for (i = 0; cycle->modules[i]; i++) {

      if (cycle->modules[i]->type != NGX_EVENT_MODULE) {
        continue;
      }

      event_module = cycle->modules[i]->ctx;

      if (ngx_strcmp(event_module->name->data, event_core_name.data) == 0) {
        continue;
      }

      module = cycle->modules[i];
      break;
    }
  }

  // 如果此时module还是为NULL,则返回异常
  if (module == NULL) {
    ngx_log_error(NGX_LOG_EMERG, cycle->log, 0, "no events module found");
    return NGX_CONF_ERROR;
  }

  // 下面的操作主要是判断各个属性是否为初始设置的无效值,如果是,则说明nginx.conf中没有配置
  // 关于该属性的配置项,那么这里就会为该属性设置默认值
  ngx_conf_init_uint_value(ecf->connections, DEFAULT_CONNECTIONS);
  cycle->connection_n = ecf->connections;

  ngx_conf_init_uint_value(ecf->use, module->ctx_index);

  event_module = module->ctx;
  ngx_conf_init_ptr_value(ecf->name, event_module->name->data);

  ngx_conf_init_value(ecf->multi_accept, 0);
  ngx_conf_init_value(ecf->accept_mutex, 0);
  ngx_conf_init_msec_value(ecf->accept_mutex_delay, 500);

  return NGX_CONF_OK;
}

        ngx_event_core_init_conf()方法的主要做了两件事:

5. ngx_event_module_init()----核心模块的配置项初始化

        对于ngx_event_core_module模块而言,其还指定了两个方法,一个是用于初始化模块的ngx_event_module_init()方法,另一个是用于worker进程执行主循环逻辑之前进行调用的ngx_event_process_init()方法。ngx_event_module_init()方法是在master进程中调用的,其会在解析完nginx.conf文件中的所有配置项之后调用,本质上,该方法的作用就是对当前配置的核心模块(事件模块)进行初始化。如下是ngx_event_module_init()方法的源码:

/**
 * 当前方法的主要作用是申请一块用于存储统计数据的共享内存,然后设置ngx_accept_mutex_ptr、
 * ngx_connection_counter、ngx_temp_number等变量的地址,如果开启了slab stat,
 * 那么还会设置ngx_stat_accepted、ngx_stat_handled、ngx_stat_requests等的地址,以统计更多的数据
 */
static ngx_int_t ngx_event_module_init(ngx_cycle_t *cycle) {
  void ***cf;
  u_char *shared;
  size_t size, cl;
  ngx_shm_t shm;
  ngx_time_t *tp;
  ngx_core_conf_t *ccf;
  ngx_event_conf_t *ecf;

  // 获取core event module的配置结构体
  cf = ngx_get_conf(cycle->conf_ctx, ngx_events_module);
  ecf = (*cf)[ngx_event_core_module.ctx_index];

  if (!ngx_test_config && ngx_process <= NGX_PROCESS_MASTER) {
    ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0,
                  "using the \"%s\" event method", ecf->name);
  }

  // 获取core module的配置对象
  ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module);

  ngx_timer_resolution = ccf->timer_resolution;

#if !(NGX_WIN32)
  {
    ngx_int_t limit;
    struct rlimit rlmt;

    if (getrlimit(RLIMIT_NOFILE, &rlmt) == -1) {
      ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                    "getrlimit(RLIMIT_NOFILE) failed, ignored");

    } else {
      // 这里主要是检查当前事件模块配置的connections数目是否超过了操作系统限制的最大文件句柄数,
      // 或者超过了配置文件中指定的最大文件句柄数
      if (ecf->connections > (ngx_uint_t) rlmt.rlim_cur
          && (ccf->rlimit_nofile == NGX_CONF_UNSET
              || ecf->connections > (ngx_uint_t) ccf->rlimit_nofile)) {
        limit = (ccf->rlimit_nofile == NGX_CONF_UNSET) ?
                (ngx_int_t) rlmt.rlim_cur : ccf->rlimit_nofile;

        ngx_log_error(NGX_LOG_WARN, cycle->log, 0,
                      "%ui worker_connections exceed "
                      "open file resource limit: %i",
                      ecf->connections, limit);
      }
    }
  }
#endif /* !(NGX_WIN32) */


  if (ccf->master == 0) {
    return NGX_OK;
  }

  if (ngx_accept_mutex_ptr) {
    return NGX_OK;
  }


  /* cl should be equal to or greater than cache line size */

  cl = 128;

  size = cl            /* ngx_accept_mutex */
         + cl          /* ngx_connection_counter */
         + cl;         /* ngx_temp_number */

#if (NGX_STAT_STUB)

  size += cl           /* ngx_stat_accepted */
         + cl          /* ngx_stat_handled */
         + cl          /* ngx_stat_requests */
         + cl          /* ngx_stat_active */
         + cl          /* ngx_stat_reading */
         + cl          /* ngx_stat_writing */
         + cl;         /* ngx_stat_waiting */

#endif

  // 设置共享内存的大小
  shm.size = size;
  ngx_str_set(&shm.name, "nginx_shared_zone");
  shm.log = cycle->log;

  // 为共享内存结构体申请内存块
  if (ngx_shm_alloc(&shm) != NGX_OK) {
    return NGX_ERROR;
  }

  // addr就是申请的共享内存块的地址
  shared = shm.addr;

  ngx_accept_mutex_ptr = (ngx_atomic_t *) shared;
  ngx_accept_mutex.spin = (ngx_uint_t) -1;

  if (ngx_shmtx_create(&ngx_accept_mutex, (ngx_shmtx_sh_t *) shared, cycle->lock_file.data) != NGX_OK) {
    return NGX_ERROR;
  }

  // 获取ngx_connection_counter的地址
  ngx_connection_counter = (ngx_atomic_t *) (shared + 1 * cl);

  // 将ngx_connection_counter的值设置为1
  (void) ngx_atomic_cmp_set(ngx_connection_counter, 0, 1);

  ngx_log_debug2(NGX_LOG_DEBUG_EVENT, cycle->log, 0,
                 "counter: %p, %uA",
                 ngx_connection_counter, *ngx_connection_counter);

  // 获取ngx_temp_number的地址
  ngx_temp_number = (ngx_atomic_t *) (shared + 2 * cl);

  tp = ngx_timeofday();

  // 生成一个随机数
  ngx_random_number = (tp->msec << 16) + ngx_pid;

#if (NGX_STAT_STUB)

  ngx_stat_accepted = (ngx_atomic_t *) (shared + 3 * cl);
  ngx_stat_handled = (ngx_atomic_t *) (shared + 4 * cl);
  ngx_stat_requests = (ngx_atomic_t *) (shared + 5 * cl);
  ngx_stat_active = (ngx_atomic_t *) (shared + 6 * cl);
  ngx_stat_reading = (ngx_atomic_t *) (shared + 7 * cl);
  ngx_stat_writing = (ngx_atomic_t *) (shared + 8 * cl);
  ngx_stat_waiting = (ngx_atomic_t *) (shared + 9 * cl);

#endif

  return NGX_OK;
}

        ngx_event_module_init()方法主要完成的工作有如下几个:

6. ngx_event_process_init()----初始化worker进程

        ngx_event_process_init()方法主要是在worker进程执行主循环之前进行初始化调用的,如下是该方法的源码:

static ngx_int_t ngx_event_process_init(ngx_cycle_t *cycle) {
  ngx_uint_t m, i;
  ngx_event_t *rev, *wev;
  ngx_listening_t *ls;
  ngx_connection_t *c, *next, *old;
  ngx_core_conf_t *ccf;
  ngx_event_conf_t *ecf;
  ngx_event_module_t *module;

  // 获取核心模块的配置对象
  ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module);
  // 获取事件核心模块的配置对象
  ecf = ngx_event_get_conf(cycle->conf_ctx, ngx_event_core_module);

  // 判断当前如果满足三个条件,则标记当前为使用共享锁的方式:
  // 1. 当前为master-worker模式;
  // 2. 当前worker进程的数量大于1;
  // 3. 当前打开了使用共享锁的开关;
  if (ccf->master && ccf->worker_processes > 1 && ecf->accept_mutex) {
    ngx_use_accept_mutex = 1;
    ngx_accept_mutex_held = 0;
    ngx_accept_mutex_delay = ecf->accept_mutex_delay;

  } else {
    // 如果不满足上述条件,则指定不使用共享锁
    ngx_use_accept_mutex = 0;
  }

#if (NGX_WIN32)

  /*
   * disable accept mutex on win32 as it may cause deadlock if
   * grabbed by a process which can't accept connections
   */

  ngx_use_accept_mutex = 0;

#endif

  // 这里这两个队列的主要作用在于,每个worker进程在获取到共享锁之后,就会接收客户端accept事件,
  // 然后将其放入到ngx_posted_accept_events队列中,接着处理该队列中的事件,并且将客户端连接添加到
  // ngx_posted_events队列中,然后再释放锁,也就是说获取锁的worker进程只需要进行accept客户端连接,
  // 然后将锁的权限交给其他的进程,并且再自行处理接收到的连接的读写事件

  // 创建ngx_posted_accept_events队列,该队列用于接收客户端的连接事件
  ngx_queue_init(&ngx_posted_accept_events);
  // 创建ngx_posted_events队列,该队列用于处理客户端连接的读写事件
  ngx_queue_init(&ngx_posted_events);

  // 初始化一个用于存储事件的红黑树
  if (ngx_event_timer_init(cycle->log) == NGX_ERROR) {
    return NGX_ERROR;
  }

  for (m = 0; cycle->modules[m]; m++) {
    if (cycle->modules[m]->type != NGX_EVENT_MODULE) {
      continue;
    }

    // ecf->use存储了所选用的事件模型的模块序号,这里是找到该模块
    if (cycle->modules[m]->ctx_index != ecf->use) {
      continue;
    }

    // module即为所选用的事件模型对应的模块
    module = cycle->modules[m]->ctx;

    // 调用指定事件模型的初始化方法
    if (module->actions.init(cycle, ngx_timer_resolution) != NGX_OK) {
      /* fatal */
      exit(2);
    }

    break;
  }

#if !(NGX_WIN32)

  // ngx_timer_resolution表示发送更新时间事件的时间间隔
  // 这里表示如果设置了ngx_timer_resolution,并且没有设置定时事件。
  // ngx_event_flags是在事件模块的初始化中设置的,而且只有eventport和kqueue模型才会将
  // NGX_USE_TIMER_EVENT设置到ngx_event_flags中
  if (ngx_timer_resolution && !(ngx_event_flags & NGX_USE_TIMER_EVENT)) {
    struct sigaction sa;
    struct itimerval itv;

    ngx_memzero(&sa, sizeof(struct sigaction));
    // 这里的sa主要是添加下面的SIGALRM的信号监听事件,该信号的作用是每隔一段时间就会向当前进程发出
    // 当前进程收到信号之后就会调用下面的ngx_timer_signal_handler()方法,该方法中会将
    // ngx_event_timer_alarm设置为1,而后当前进程在进行事件循环的时候,判断如果
    // ngx_event_timer_alarm为1,则会更新当前进程所缓存的时间数据
    sa.sa_handler = ngx_timer_signal_handler;
    sigemptyset(&sa.sa_mask);

    // 添加SIGALRM监听信号
    if (sigaction(SIGALRM, &sa, NULL) == -1) {
      ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                    "sigaction(SIGALRM) failed");
      return NGX_ERROR;
    }

    // 设置时间间隔相关参数
    itv.it_interval.tv_sec = ngx_timer_resolution / 1000;
    itv.it_interval.tv_usec = (ngx_timer_resolution % 1000) * 1000;
    itv.it_value.tv_sec = ngx_timer_resolution / 1000;
    itv.it_value.tv_usec = (ngx_timer_resolution % 1000) * 1000;

    // 按照指定的时间间隔设置定时器
    if (setitimer(ITIMER_REAL, &itv, NULL) == -1) {
      ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                    "setitimer() failed");
    }
  }

  // NGX_USE_FD_EVENT表示event filter没有透明数据,并需要一个文件描述符表,其主要用于poll、/dev/poll
  if (ngx_event_flags & NGX_USE_FD_EVENT) {
    struct rlimit rlmt;

    if (getrlimit(RLIMIT_NOFILE, &rlmt) == -1) {
      ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,
                    "getrlimit(RLIMIT_NOFILE) failed");
      return NGX_ERROR;
    }

    // 这里主要是初始化最大个数的ngx_connection_t结构体,将其保存在files数组中
    cycle->files_n = (ngx_uint_t) rlmt.rlim_cur;

    cycle->files = ngx_calloc(sizeof(ngx_connection_t *) * cycle->files_n, cycle->log);
    if (cycle->files == NULL) {
      return NGX_ERROR;
    }
  }

#else

  if (ngx_timer_resolution && !(ngx_event_flags & NGX_USE_TIMER_EVENT)) {
      ngx_log_error(NGX_LOG_WARN, cycle->log, 0,
                    "the \"timer_resolution\" directive is not supported "
                    "with the configured event method, ignored");
      ngx_timer_resolution = 0;
  }

#endif

  // 申请指定个数的ngx_connection_t数组,这里的connection_n对应的是配置
  // 文件中的worker_connections所指定的大小
  cycle->connections = ngx_alloc(sizeof(ngx_connection_t) * cycle->connection_n, cycle->log);
  if (cycle->connections == NULL) {
    return NGX_ERROR;
  }

  c = cycle->connections;

  // 申请指定个数的ngx_event_t数组,其长度与connections数组一致,
  // 这样便可以将connections数组与read_events数组进行对应
  cycle->read_events = ngx_alloc(sizeof(ngx_event_t) * cycle->connection_n, cycle->log);
  if (cycle->read_events == NULL) {
    return NGX_ERROR;
  }

  rev = cycle->read_events;
  for (i = 0; i < cycle->connection_n; i++) {
    rev[i].closed = 1;  // 初始状态默认读事件都是closed状态
    rev[i].instance = 1;  // 初始时初始化instance为1
  }

  // 申请指定个数的ngx_event_t数组,其长度与connections数组一致,
  // 这样便可以将connections数组与write_events数组进行对应
  cycle->write_events = ngx_alloc(sizeof(ngx_event_t) * cycle->connection_n, cycle->log);
  if (cycle->write_events == NULL) {
    return NGX_ERROR;
  }

  wev = cycle->write_events;
  for (i = 0; i < cycle->connection_n; i++) {
    wev[i].closed = 1;  // 初始时写事件默认也都是closed状态
  }

  i = cycle->connection_n;
  next = NULL;

  do {
    i--;

    // 将read_events和write_events数组的元素依次赋值到connections数组元素的read和write属性中,
    // 并且将connections数组组装成一个单链表
    c[i].data = next;
    c[i].read = &cycle->read_events[i];
    c[i].write = &cycle->write_events[i];
    c[i].fd = (ngx_socket_t) -1;

    next = &c[i];
  } while (i);

  // 初始状态时,所有的connections都未被使用,因而需要存储在free_connections链表中
  cycle->free_connections = next;
  cycle->free_connection_n = cycle->connection_n;

  /* for each listening socket */

  ls = cycle->listening.elts;
  for (i = 0; i < cycle->listening.nelts; i++) {

#if (NGX_HAVE_REUSEPORT)
    if (ls[i].reuseport && ls[i].worker != ngx_worker) {
      continue;
    }
#endif

    // 这里是为当前所监听的每一个端口都绑定一个ngx_connection_t结构体
    c = ngx_get_connection(ls[i].fd, cycle->log);

    if (c == NULL) {
      return NGX_ERROR;
    }

    c->type = ls[i].type;
    c->log = &ls[i].log;

    c->listening = &ls[i];
    ls[i].connection = c;

    rev = c->read;

    rev->log = c->log;
    // 标记accept为1,表示当前可以接收客户端的连接事件
    rev->accept = 1;

#if (NGX_HAVE_DEFERRED_ACCEPT)
    rev->deferred_accept = ls[i].deferred_accept;
#endif

    if (!(ngx_event_flags & NGX_USE_IOCP_EVENT)) {
      if (ls[i].previous) {

        /*
         * delete the old accept events that were bound to
         * the old cycle read events array
         */

        // 删除旧的事件
        old = ls[i].previous->connection;

        if (ngx_del_event(old->read, NGX_READ_EVENT, NGX_CLOSE_EVENT) == NGX_ERROR) {
          return NGX_ERROR;
        }

        old->fd = (ngx_socket_t) -1;
      }
    }

#if (NGX_WIN32)

    if (ngx_event_flags & NGX_USE_IOCP_EVENT) {
        ngx_iocp_conf_t  *iocpcf;

        rev->handler = ngx_event_acceptex;

        if (ngx_use_accept_mutex) {
            continue;
        }

        if (ngx_add_event(rev, 0, NGX_IOCP_ACCEPT) == NGX_ERROR) {
            return NGX_ERROR;
        }

        ls[i].log.handler = ngx_acceptex_log_error;

        iocpcf = ngx_event_get_conf(cycle->conf_ctx, ngx_iocp_module);
        if (ngx_event_post_acceptex(&ls[i], iocpcf->post_acceptex)
            == NGX_ERROR)
        {
            return NGX_ERROR;
        }

    } else {
        rev->handler = ngx_event_accept;

        if (ngx_use_accept_mutex) {
            continue;
        }

        if (ngx_add_event(rev, NGX_READ_EVENT, 0) == NGX_ERROR) {
            return NGX_ERROR;
        }
    }

#else

    // SOCK_STREAM表示TCP,一般都是TCP,也就是说在接收到客户端的accept事件之后,
    // 就会调用ngx_event_accept()方法处理该事件
    rev->handler = (c->type == SOCK_STREAM) ? ngx_event_accept
                                            : ngx_event_recvmsg;

#if (NGX_HAVE_REUSEPORT)

    // 添加当前事件到事件监听队列中
    if (ls[i].reuseport) {
      if (ngx_add_event(rev, NGX_READ_EVENT, 0) == NGX_ERROR) {
        return NGX_ERROR;
      }

      continue;
    }

#endif

    if (ngx_use_accept_mutex) {
      continue;
    }

#if (NGX_HAVE_EPOLLEXCLUSIVE)

    if ((ngx_event_flags & NGX_USE_EPOLL_EVENT)
        && ccf->worker_processes > 1)
    {
        if (ngx_add_event(rev, NGX_READ_EVENT, NGX_EXCLUSIVE_EVENT)
            == NGX_ERROR)
        {
            return NGX_ERROR;
        }

        continue;
    }

#endif

    // 添加当前事件到事件监听队列中
    if (ngx_add_event(rev, NGX_READ_EVENT, 0) == NGX_ERROR) {
      return NGX_ERROR;
    }

#endif

  }

  return NGX_OK;
}

        这里ngx_event_process_init()方法主要完成了如下几个工作:

看完上述内容,你们掌握nginx中怎么实现一个事件模块的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注亿速云行业资讯频道,感谢各位的阅读!

推荐阅读:
  1. Nginx Rewrite模块(内含Nginx模块概述)———理论篇
  2. 怎么在Nginx中添加lua模块

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

nginx

上一篇:Golang中 WaitGroup的实现原理是什么

下一篇:MyBatis 中怎么自定义参数排序

相关阅读

您好,登录后才能下订单哦!

密码登录
登录注册
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》